145edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 144edt 145edt 146edt →
Prime factorization 5 × 29
Step size 13.1169¢ 
Octave 91\145edt (1193.64¢)
Consistency limit 2
Distinct consistency limit 2

145 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 145edt or 145ed3), is a nonoctave tuning system that divides the interval of 3/1 into 145 equal parts of about 13.1⁠ ⁠¢ each. Each step represents a frequency ratio of 31/145, or the 145th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.1 9
2 26.2 17.9
3 39.4 26.9 43/42, 46/45
4 52.5 35.9 34/33
5 65.6 44.8 27/26
6 78.7 53.8 45/43
7 91.8 62.8 39/37
8 104.9 71.7
9 118.1 80.7 15/14, 46/43
10 131.2 89.7 41/38
11 144.3 98.6
12 157.4 107.6 23/21
13 170.5 116.6
14 183.6 125.5
15 196.8 134.5 28/25
16 209.9 143.4 35/31
17 223 152.4 33/29
18 236.1 161.4 47/41
19 249.2 170.3 52/45
20 262.3 179.3
21 275.5 188.3 34/29, 41/35
22 288.6 197.2
23 301.7 206.2
24 314.8 215.2 6/5
25 327.9 224.1 52/43
26 341 233.1
27 354.2 242.1
28 367.3 251 21/17, 47/38
29 380.4 260
30 393.5 269 54/43
31 406.6 277.9 43/34
32 419.7 286.9
33 432.9 295.9
34 446 304.8
35 459.1 313.8 43/33
36 472.2 322.8 46/35
37 485.3 331.7 41/31, 45/34, 49/37
38 498.4 340.7
39 511.6 349.7 47/35
40 524.7 358.6 23/17, 42/31
41 537.8 367.6 15/11
42 550.9 376.6
43 564 385.5
44 577.1 394.5
45 590.3 403.4 38/27
46 603.4 412.4
47 616.5 421.4
48 629.6 430.3
49 642.7 439.3 42/29
50 655.8 448.3 19/13
51 669 457.2
52 682.1 466.2 43/29, 46/31
53 695.2 475.2
54 708.3 484.1
55 721.4 493.1 47/31
56 734.5 502.1 26/17, 55/36
57 747.7 511
58 760.8 520 45/29
59 773.9 529
60 787 537.9 41/26, 52/33
61 800.1 546.9 27/17, 46/29
62 813.2 555.9
63 826.4 564.8 29/18
64 839.5 573.8
65 852.6 582.8 18/11
66 865.7 591.7
67 878.8 600.7
68 892 609.7
69 905.1 618.6
70 918.2 627.6
71 931.3 636.6
72 944.4 645.5
73 957.5 654.5
74 970.7 663.4
75 983.8 672.4
76 996.9 681.4
77 1010 690.3 52/29
78 1023.1 699.3
79 1036.2 708.3
80 1049.4 717.2 11/6
81 1062.5 726.2
82 1075.6 735.2 54/29
83 1088.7 744.1
84 1101.8 753.1 17/9
85 1114.9 762.1
86 1128.1 771
87 1141.2 780 29/15
88 1154.3 789 37/19
89 1167.4 797.9 51/26, 55/28
90 1180.5 806.9
91 1193.6 815.9
92 1206.8 824.8
93 1219.9 833.8
94 1233 842.8
95 1246.1 851.7 39/19
96 1259.2 860.7 29/14
97 1272.3 869.7
98 1285.5 878.6
99 1298.6 887.6
100 1311.7 896.6
101 1324.8 905.5
102 1337.9 914.5
103 1351 923.4
104 1364.2 932.4 11/5
105 1377.3 941.4 31/14, 51/23
106 1390.4 950.3
107 1403.5 959.3
108 1416.6 968.3 34/15
109 1429.7 977.2
110 1442.9 986.2
111 1456 995.2
112 1469.1 1004.1
113 1482.2 1013.1
114 1495.3 1022.1
115 1508.4 1031 43/18
116 1521.6 1040
117 1534.7 1049 17/7
118 1547.8 1057.9
119 1560.9 1066.9
120 1574 1075.9
121 1587.1 1084.8 5/2
122 1600.3 1093.8
123 1613.4 1102.8
124 1626.5 1111.7
125 1639.6 1120.7 49/19
126 1652.7 1129.7
127 1665.9 1138.6
128 1679 1147.6 29/11
129 1692.1 1156.6
130 1705.2 1165.5
131 1718.3 1174.5
132 1731.4 1183.4
133 1744.6 1192.4
134 1757.7 1201.4
135 1770.8 1210.3
136 1783.9 1219.3 14/5
137 1797 1228.3
138 1810.1 1237.2 37/13
139 1823.3 1246.2 43/15
140 1836.4 1255.2 26/9
141 1849.5 1264.1
142 1862.6 1273.1
143 1875.7 1282.1
144 1888.8 1291
145 1902 1300 3/1

Harmonics

Approximation of harmonics in 145edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.36 +0.00 +0.40 -5.52 -6.36 +2.23 -5.96 +0.00 +1.23 -6.37 +0.40
Relative (%) -48.5 +0.0 +3.0 -42.1 -48.5 +17.0 -45.4 +0.0 +9.4 -48.5 +3.0
Steps
(reduced)
91
(91)
145
(0)
183
(38)
212
(67)
236
(91)
257
(112)
274
(129)
290
(0)
304
(14)
316
(26)
328
(38)
Approximation of harmonics in 145edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.11 -4.13 -5.52 +0.80 +0.78 -6.36 +4.97 -5.13 +2.23 +0.39 +2.14
Relative (%) +46.6 -31.5 -42.1 +6.1 +5.9 -48.5 +37.9 -39.1 +17.0 +3.0 +16.3
Steps
(reduced)
339
(49)
348
(58)
357
(67)
366
(76)
374
(84)
381
(91)
389
(99)
395
(105)
402
(112)
408
(118)
414
(124)