145edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 144edt145edt146edt →
Prime factorization 5 × 29
Step size 13.1169¢ 
Octave 91\145edt (1193.64¢)
Consistency limit 2
Distinct consistency limit 2

145 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 145edt or 145ed3), is a nonoctave tuning system that divides the interval of 3/1 into 145 equal parts of about 13.1 ¢ each. Each step represents a frequency ratio of 31/145, or the 145th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.117
2 26.234
3 39.351 43/42, 46/45
4 52.468 34/33
5 65.585 27/26
6 78.702 45/43
7 91.819 39/37
8 104.935
9 118.052 15/14, 46/43
10 131.169 41/38
11 144.286
12 157.403 23/21
13 170.52
14 183.637
15 196.754 28/25
16 209.871 35/31
17 222.988 33/29
18 236.105 47/41
19 249.222 52/45
20 262.339
21 275.456 34/29, 41/35
22 288.572
23 301.689
24 314.806 6/5
25 327.923 52/43
26 341.04
27 354.157
28 367.274 21/17, 47/38
29 380.391
30 393.508 54/43
31 406.625 43/34
32 419.742
33 432.859
34 445.976
35 459.093 43/33
36 472.21 46/35
37 485.326 41/31, 45/34, 49/37
38 498.443
39 511.56 47/35
40 524.677 23/17, 42/31
41 537.794 15/11
42 550.911
43 564.028
44 577.145
45 590.262 38/27
46 603.379
47 616.496
48 629.613
49 642.73 42/29
50 655.847 19/13
51 668.963
52 682.08 43/29, 46/31
53 695.197
54 708.314
55 721.431 47/31
56 734.548 26/17, 55/36
57 747.665
58 760.782 45/29
59 773.899
60 787.016 41/26, 52/33
61 800.133 27/17, 46/29
62 813.25
63 826.367 29/18
64 839.484
65 852.601 18/11
66 865.717
67 878.834
68 891.951
69 905.068
70 918.185
71 931.302
72 944.419
73 957.536
74 970.653
75 983.77
76 996.887
77 1010.004 52/29
78 1023.121
79 1036.238
80 1049.354 11/6
81 1062.471
82 1075.588 54/29
83 1088.705
84 1101.822 17/9
85 1114.939
86 1128.056
87 1141.173 29/15
88 1154.29 37/19
89 1167.407 51/26, 55/28
90 1180.524
91 1193.641
92 1206.758
93 1219.875
94 1232.992
95 1246.108 39/19
96 1259.225 29/14
97 1272.342
98 1285.459
99 1298.576
100 1311.693
101 1324.81
102 1337.927
103 1351.044
104 1364.161 11/5
105 1377.278 31/14, 51/23
106 1390.395
107 1403.512
108 1416.629 34/15
109 1429.745
110 1442.862
111 1455.979
112 1469.096
113 1482.213
114 1495.33
115 1508.447 43/18
116 1521.564
117 1534.681 17/7
118 1547.798
119 1560.915
120 1574.032
121 1587.149 5/2
122 1600.266
123 1613.383
124 1626.499
125 1639.616 49/19
126 1652.733
127 1665.85
128 1678.967 29/11
129 1692.084
130 1705.201
131 1718.318
132 1731.435
133 1744.552
134 1757.669
135 1770.786
136 1783.903 14/5
137 1797.02
138 1810.136 37/13
139 1823.253 43/15
140 1836.37 26/9
141 1849.487
142 1862.604
143 1875.721
144 1888.838
145 1901.955 3/1

Harmonics

Approximation of harmonics in 145edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.36 +0.00 +0.40 -5.52 -6.36 +2.23 -5.96 +0.00 +1.23 -6.37 +0.40
Relative (%) -48.5 +0.0 +3.0 -42.1 -48.5 +17.0 -45.4 +0.0 +9.4 -48.5 +3.0
Steps
(reduced)
91
(91)
145
(0)
183
(38)
212
(67)
236
(91)
257
(112)
274
(129)
290
(0)
304
(14)
316
(26)
328
(38)
Approximation of harmonics in 145edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.11 -4.13 -5.52 +0.80 +0.78 -6.36 +4.97 -5.13 +2.23 +0.39 +2.14
Relative (%) +46.6 -31.5 -42.1 +6.1 +5.9 -48.5 +37.9 -39.1 +17.0 +3.0 +16.3
Steps
(reduced)
339
(49)
348
(58)
357
(67)
366
(76)
374
(84)
381
(91)
389
(99)
395
(105)
402
(112)
408
(118)
414
(124)