144edt
Jump to navigation
Jump to search
Prime factorization
24 × 32
Step size
13.208¢
Octave
91\144edt (1201.93¢)
Consistency limit
10
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 143edt | 144edt | 145edt → |
144 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 144edt or 144ed3), is a nonoctave tuning system that divides the interval of 3/1 into 144 equal parts of about 13.2 ¢ each. Each step represents a frequency ratio of 31/144, or the 144th root of 3.
144edt is notable for being the first edt that is consistent to the no-twos 37-throdd limit, due to being highly accurate in the 3.5.7 subgroup while having a flat tendency for most higher primes up to 37; this record is not matched again until 316edt and not surpassed until 493edt (the latter essentially being a slight octave compression of 311edo).
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 13.2 | 9 | |
2 | 26.4 | 18.1 | |
3 | 39.6 | 27.1 | 43/42, 44/43, 45/44, 46/45 |
4 | 52.8 | 36.1 | 34/33 |
5 | 66 | 45.1 | 27/26 |
6 | 79.2 | 54.2 | 22/21, 45/43 |
7 | 92.5 | 63.2 | 19/18, 39/37 |
8 | 105.7 | 72.2 | 50/47 |
9 | 118.9 | 81.3 | 15/14 |
10 | 132.1 | 90.3 | 27/25, 41/38, 55/51 |
11 | 145.3 | 99.3 | 25/23, 37/34 |
12 | 158.5 | 108.3 | 23/21, 34/31 |
13 | 171.7 | 117.4 | 21/19 |
14 | 184.9 | 126.4 | 49/44 |
15 | 198.1 | 135.4 | 37/33, 46/41 |
16 | 211.3 | 144.4 | 26/23, 35/31 |
17 | 224.5 | 153.5 | 33/29, 41/36, 49/43 |
18 | 237.7 | 162.5 | 31/27, 39/34, 47/41 |
19 | 251 | 171.5 | 52/45 |
20 | 264.2 | 180.6 | |
21 | 277.4 | 189.6 | 27/23 |
22 | 290.6 | 198.6 | 13/11 |
23 | 303.8 | 207.6 | 31/26, 56/47 |
24 | 317 | 216.7 | 6/5 |
25 | 330.2 | 225.7 | 23/19, 52/43 |
26 | 343.4 | 234.7 | 50/41 |
27 | 356.6 | 243.8 | 43/35 |
28 | 369.8 | 252.8 | 26/21 |
29 | 383 | 261.8 | |
30 | 396.2 | 270.8 | 39/31, 44/35, 49/39 |
31 | 409.4 | 279.9 | 19/15 |
32 | 422.7 | 288.9 | 37/29 |
33 | 435.9 | 297.9 | 9/7 |
34 | 449.1 | 306.9 | 35/27 |
35 | 462.3 | 316 | 47/36 |
36 | 475.5 | 325 | 25/19, 54/41 |
37 | 488.7 | 334 | |
38 | 501.9 | 343.1 | |
39 | 515.1 | 352.1 | 35/26 |
40 | 528.3 | 361.1 | 19/14 |
41 | 541.5 | 370.1 | 26/19, 41/30 |
42 | 554.7 | 379.2 | 51/37 |
43 | 567.9 | 388.2 | 25/18, 43/31 |
44 | 581.2 | 397.2 | 7/5 |
45 | 594.4 | 406.3 | 31/22, 55/39 |
46 | 607.6 | 415.3 | 27/19, 44/31 |
47 | 620.8 | 424.3 | |
48 | 634 | 433.3 | 49/34 |
49 | 647.2 | 442.4 | |
50 | 660.4 | 451.4 | 41/28 |
51 | 673.6 | 460.4 | 31/21 |
52 | 686.8 | 469.4 | 52/35, 55/37 |
53 | 700 | 478.5 | |
54 | 713.2 | 487.5 | |
55 | 726.4 | 496.5 | 35/23, 38/25 |
56 | 739.6 | 505.6 | 23/15 |
57 | 752.9 | 514.6 | 17/11 |
58 | 766.1 | 523.6 | 14/9 |
59 | 779.3 | 532.6 | |
60 | 792.5 | 541.7 | 49/31 |
61 | 805.7 | 550.7 | 43/27 |
62 | 818.9 | 559.7 | |
63 | 832.1 | 568.8 | 55/34 |
64 | 845.3 | 577.8 | 44/27 |
65 | 858.5 | 586.8 | 23/14 |
66 | 871.7 | 595.8 | 43/26 |
67 | 884.9 | 604.9 | 5/3 |
68 | 898.1 | 613.9 | 42/25, 47/28 |
69 | 911.4 | 622.9 | 22/13 |
70 | 924.6 | 631.9 | 29/17 |
71 | 937.8 | 641 | 43/25 |
72 | 951 | 650 | 26/15, 45/26 |
73 | 964.2 | 659 | |
74 | 977.4 | 668.1 | 44/25, 51/29 |
75 | 990.6 | 677.1 | 39/22 |
76 | 1003.8 | 686.1 | 25/14 |
77 | 1017 | 695.1 | 9/5 |
78 | 1030.2 | 704.2 | 49/27 |
79 | 1043.4 | 713.2 | 42/23 |
80 | 1056.6 | 722.2 | 35/19, 46/25 |
81 | 1069.8 | 731.3 | |
82 | 1083.1 | 740.3 | 43/23 |
83 | 1096.3 | 749.3 | 49/26 |
84 | 1109.5 | 758.3 | 55/29 |
85 | 1122.7 | 767.4 | 44/23 |
86 | 1135.9 | 776.4 | 27/14, 52/27 |
87 | 1149.1 | 785.4 | 33/17 |
88 | 1162.3 | 794.4 | 45/23, 47/24 |
89 | 1175.5 | 803.5 | |
90 | 1188.7 | 812.5 | |
91 | 1201.9 | 821.5 | |
92 | 1215.1 | 830.6 | |
93 | 1228.3 | 839.6 | |
94 | 1241.6 | 848.6 | 41/20, 43/21 |
95 | 1254.8 | 857.6 | |
96 | 1268 | 866.7 | 52/25 |
97 | 1281.2 | 875.7 | 44/21 |
98 | 1294.4 | 884.7 | 19/9 |
99 | 1307.6 | 893.8 | |
100 | 1320.8 | 902.8 | 15/7 |
101 | 1334 | 911.8 | 54/25 |
102 | 1347.2 | 920.8 | 37/17 |
103 | 1360.4 | 929.9 | |
104 | 1373.6 | 938.9 | 42/19 |
105 | 1386.8 | 947.9 | 49/22 |
106 | 1400.1 | 956.9 | |
107 | 1413.3 | 966 | 43/19, 52/23 |
108 | 1426.5 | 975 | 41/18 |
109 | 1439.7 | 984 | |
110 | 1452.9 | 993.1 | 44/19 |
111 | 1466.1 | 1002.1 | 7/3 |
112 | 1479.3 | 1011.1 | 47/20 |
113 | 1492.5 | 1020.1 | 45/19 |
114 | 1505.7 | 1029.2 | 31/13 |
115 | 1518.9 | 1038.2 | |
116 | 1532.1 | 1047.2 | 46/19 |
117 | 1545.3 | 1056.3 | |
118 | 1558.5 | 1065.3 | |
119 | 1571.8 | 1074.3 | |
120 | 1585 | 1083.3 | 5/2 |
121 | 1598.2 | 1092.4 | |
122 | 1611.4 | 1101.4 | 33/13 |
123 | 1624.6 | 1110.4 | 23/9 |
124 | 1637.8 | 1119.4 | |
125 | 1651 | 1128.5 | |
126 | 1664.2 | 1137.5 | 34/13 |
127 | 1677.4 | 1146.5 | 29/11 |
128 | 1690.6 | 1155.6 | |
129 | 1703.8 | 1164.6 | |
130 | 1717 | 1173.6 | |
131 | 1730.3 | 1182.6 | 19/7 |
132 | 1743.5 | 1191.7 | 52/19 |
133 | 1756.7 | 1200.7 | |
134 | 1769.9 | 1209.7 | 25/9 |
135 | 1783.1 | 1218.8 | 14/5 |
136 | 1796.3 | 1227.8 | |
137 | 1809.5 | 1236.8 | 37/13, 54/19 |
138 | 1822.7 | 1245.8 | 43/15 |
139 | 1835.9 | 1254.9 | 26/9 |
140 | 1849.1 | 1263.9 | |
141 | 1862.3 | 1272.9 | 44/15 |
142 | 1875.5 | 1281.9 | |
143 | 1888.7 | 1291 | |
144 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.93 | +0.00 | +0.58 | -0.78 | -4.00 | -2.63 | -4.78 | +0.78 | +0.22 |
Relative (%) | +14.6 | +0.0 | +4.4 | -5.9 | -30.3 | -19.9 | -36.2 | +5.9 | +1.7 | |
Steps (reduced) |
91 (91) |
144 (0) |
211 (67) |
255 (111) |
314 (26) |
336 (48) |
371 (83) |
386 (98) |
411 (123) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.16 | +0.00 | -4.84 | -1.43 | -4.00 | -0.20 | -3.95 | -2.63 | +3.24 | +0.04 | +0.58 |
Relative (%) | +8.8 | +0.0 | -36.6 | -10.8 | -30.3 | -1.5 | -29.9 | -19.9 | +24.6 | +0.3 | +4.4 | |
Steps (reduced) |
422 (134) |
432 (0) |
441 (9) |
450 (18) |
458 (26) |
466 (34) |
473 (41) |
480 (48) |
487 (55) |
493 (61) |
499 (67) |