144edt
Jump to navigation
Jump to search
Prime factorization
24 × 32
Step size
13.208¢
Octave
91\144edt (1201.93¢)
Consistency limit
10
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 143edt | 144edt | 145edt → |
144 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 144edt or 144ed3), is a nonoctave tuning system that divides the interval of 3/1 into 144 equal parts of about 13.2 ¢ each. Each step represents a frequency ratio of 31/144, or the 144th root of 3.
144edt is notable for being the first edt that is consistent to the no-twos 37-throdd limit, due to being highly accurate in the 3.5.7 subgroup while having a flat tendency for most higher primes up to 37; this record is not matched again until 316edt and not surpassed until 493edt (the latter essentially being a slight octave compression of 311edo).
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 13.208 | |
2 | 26.416 | |
3 | 39.624 | 43/42, 44/43, 45/44, 46/45 |
4 | 52.832 | 34/33 |
5 | 66.04 | 27/26 |
6 | 79.248 | 22/21, 45/43 |
7 | 92.456 | 19/18, 39/37 |
8 | 105.664 | 50/47 |
9 | 118.872 | 15/14 |
10 | 132.08 | 27/25, 41/38, 55/51 |
11 | 145.288 | 25/23, 37/34 |
12 | 158.496 | 23/21, 34/31 |
13 | 171.704 | 21/19 |
14 | 184.912 | 49/44 |
15 | 198.12 | 37/33, 46/41 |
16 | 211.328 | 26/23, 35/31 |
17 | 224.536 | 33/29, 41/36, 49/43 |
18 | 237.744 | 31/27, 39/34, 47/41 |
19 | 250.952 | 52/45 |
20 | 264.16 | |
21 | 277.368 | 27/23 |
22 | 290.576 | 13/11 |
23 | 303.784 | 31/26, 56/47 |
24 | 316.993 | 6/5 |
25 | 330.201 | 23/19, 52/43 |
26 | 343.409 | 50/41 |
27 | 356.617 | 43/35 |
28 | 369.825 | 26/21 |
29 | 383.033 | |
30 | 396.241 | 39/31, 44/35, 49/39 |
31 | 409.449 | 19/15 |
32 | 422.657 | 37/29 |
33 | 435.865 | 9/7 |
34 | 449.073 | 35/27 |
35 | 462.281 | 47/36 |
36 | 475.489 | 25/19, 54/41 |
37 | 488.697 | |
38 | 501.905 | |
39 | 515.113 | 35/26 |
40 | 528.321 | 19/14 |
41 | 541.529 | 26/19, 41/30 |
42 | 554.737 | 51/37 |
43 | 567.945 | 25/18, 43/31 |
44 | 581.153 | 7/5 |
45 | 594.361 | 31/22, 55/39 |
46 | 607.569 | 27/19, 44/31 |
47 | 620.777 | |
48 | 633.985 | 49/34 |
49 | 647.193 | |
50 | 660.401 | 41/28 |
51 | 673.609 | 31/21 |
52 | 686.817 | 52/35, 55/37 |
53 | 700.025 | |
54 | 713.233 | |
55 | 726.441 | 35/23, 38/25 |
56 | 739.649 | 23/15 |
57 | 752.857 | 17/11 |
58 | 766.065 | 14/9 |
59 | 779.273 | |
60 | 792.481 | 49/31 |
61 | 805.689 | 43/27 |
62 | 818.897 | |
63 | 832.105 | 55/34 |
64 | 845.313 | 44/27 |
65 | 858.521 | 23/14 |
66 | 871.729 | 43/26 |
67 | 884.937 | 5/3 |
68 | 898.145 | 42/25, 47/28 |
69 | 911.353 | 22/13 |
70 | 924.561 | 29/17 |
71 | 937.769 | 43/25 |
72 | 950.978 | 26/15, 45/26 |
73 | 964.186 | |
74 | 977.394 | 44/25, 51/29 |
75 | 990.602 | 39/22 |
76 | 1003.81 | 25/14 |
77 | 1017.018 | 9/5 |
78 | 1030.226 | 49/27 |
79 | 1043.434 | 42/23 |
80 | 1056.642 | 35/19, 46/25 |
81 | 1069.85 | |
82 | 1083.058 | 43/23 |
83 | 1096.266 | 49/26 |
84 | 1109.474 | 55/29 |
85 | 1122.682 | 44/23 |
86 | 1135.89 | 27/14, 52/27 |
87 | 1149.098 | 33/17 |
88 | 1162.306 | 45/23, 47/24 |
89 | 1175.514 | |
90 | 1188.722 | |
91 | 1201.93 | |
92 | 1215.138 | |
93 | 1228.346 | |
94 | 1241.554 | 41/20, 43/21 |
95 | 1254.762 | |
96 | 1267.97 | 52/25 |
97 | 1281.178 | 44/21 |
98 | 1294.386 | 19/9 |
99 | 1307.594 | |
100 | 1320.802 | 15/7 |
101 | 1334.01 | 54/25 |
102 | 1347.218 | 37/17 |
103 | 1360.426 | |
104 | 1373.634 | 42/19 |
105 | 1386.842 | 49/22 |
106 | 1400.05 | |
107 | 1413.258 | 43/19, 52/23 |
108 | 1426.466 | 41/18 |
109 | 1439.674 | |
110 | 1452.882 | 44/19 |
111 | 1466.09 | 7/3 |
112 | 1479.298 | 47/20 |
113 | 1492.506 | 45/19 |
114 | 1505.714 | 31/13 |
115 | 1518.922 | |
116 | 1532.13 | 46/19 |
117 | 1545.338 | |
118 | 1558.546 | |
119 | 1571.754 | |
120 | 1584.963 | 5/2 |
121 | 1598.171 | |
122 | 1611.379 | 33/13 |
123 | 1624.587 | 23/9 |
124 | 1637.795 | |
125 | 1651.003 | |
126 | 1664.211 | 34/13 |
127 | 1677.419 | 29/11 |
128 | 1690.627 | |
129 | 1703.835 | |
130 | 1717.043 | |
131 | 1730.251 | 19/7 |
132 | 1743.459 | 52/19 |
133 | 1756.667 | |
134 | 1769.875 | 25/9 |
135 | 1783.083 | 14/5 |
136 | 1796.291 | |
137 | 1809.499 | 37/13, 54/19 |
138 | 1822.707 | 43/15 |
139 | 1835.915 | 26/9 |
140 | 1849.123 | |
141 | 1862.331 | 44/15 |
142 | 1875.539 | |
143 | 1888.747 | |
144 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.93 | +0.00 | +0.58 | -0.78 | -4.00 | -2.63 | -4.78 | +0.78 | +0.22 |
Relative (%) | +14.6 | +0.0 | +4.4 | -5.9 | -30.3 | -19.9 | -36.2 | +5.9 | +1.7 | |
Steps (reduced) |
91 (91) |
144 (0) |
211 (67) |
255 (111) |
314 (26) |
336 (48) |
371 (83) |
386 (98) |
411 (123) |
Harmonic | 25 | 27 | 29 | 31 | 33 | 35 | 37 | 39 | 41 | 43 | 45 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.16 | +0.00 | -4.84 | -1.43 | -4.00 | -0.20 | -3.95 | -2.63 | +3.24 | +0.04 | +0.58 |
Relative (%) | +8.8 | +0.0 | -36.6 | -10.8 | -30.3 | -1.5 | -29.9 | -19.9 | +24.6 | +0.3 | +4.4 | |
Steps (reduced) |
422 (134) |
432 (0) |
441 (9) |
450 (18) |
458 (26) |
466 (34) |
473 (41) |
480 (48) |
487 (55) |
493 (61) |
499 (67) |