144edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 143edt 144edt 145edt →
Prime factorization 24 × 32
Step size 13.208¢ 
Octave 91\144edt (1201.93¢)
Consistency limit 10
Distinct consistency limit 10

144 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 144edt or 144ed3), is a nonoctave tuning system that divides the interval of 3/1 into 144 equal parts of about 13.2⁠ ⁠¢ each. Each step represents a frequency ratio of 31/144, or the 144th root of 3.

144edt is notable for being the first edt that is consistent to the no-twos 37-throdd limit, due to being highly accurate in the 3.5.7 subgroup while having a flat tendency for most higher primes up to 37; this record is not matched again until 316edt and not surpassed until 493edt (the latter essentially being a slight octave compression of 311edo).

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.2 9
2 26.4 18.1
3 39.6 27.1 43/42, 44/43, 45/44, 46/45
4 52.8 36.1 34/33
5 66 45.1 27/26
6 79.2 54.2 22/21, 45/43
7 92.5 63.2 19/18, 39/37
8 105.7 72.2 50/47
9 118.9 81.3 15/14
10 132.1 90.3 27/25, 41/38, 55/51
11 145.3 99.3 25/23, 37/34
12 158.5 108.3 23/21, 34/31
13 171.7 117.4 21/19
14 184.9 126.4 49/44
15 198.1 135.4 37/33, 46/41
16 211.3 144.4 26/23, 35/31
17 224.5 153.5 33/29, 41/36, 49/43
18 237.7 162.5 31/27, 39/34, 47/41
19 251 171.5 52/45
20 264.2 180.6
21 277.4 189.6 27/23
22 290.6 198.6 13/11
23 303.8 207.6 31/26, 56/47
24 317 216.7 6/5
25 330.2 225.7 23/19, 52/43
26 343.4 234.7 50/41
27 356.6 243.8 43/35
28 369.8 252.8 26/21
29 383 261.8
30 396.2 270.8 39/31, 44/35, 49/39
31 409.4 279.9 19/15
32 422.7 288.9 37/29
33 435.9 297.9 9/7
34 449.1 306.9 35/27
35 462.3 316 47/36
36 475.5 325 25/19, 54/41
37 488.7 334
38 501.9 343.1
39 515.1 352.1 35/26
40 528.3 361.1 19/14
41 541.5 370.1 26/19, 41/30
42 554.7 379.2 51/37
43 567.9 388.2 25/18, 43/31
44 581.2 397.2 7/5
45 594.4 406.3 31/22, 55/39
46 607.6 415.3 27/19, 44/31
47 620.8 424.3
48 634 433.3 49/34
49 647.2 442.4
50 660.4 451.4 41/28
51 673.6 460.4 31/21
52 686.8 469.4 52/35, 55/37
53 700 478.5
54 713.2 487.5
55 726.4 496.5 35/23, 38/25
56 739.6 505.6 23/15
57 752.9 514.6 17/11
58 766.1 523.6 14/9
59 779.3 532.6
60 792.5 541.7 49/31
61 805.7 550.7 43/27
62 818.9 559.7
63 832.1 568.8 55/34
64 845.3 577.8 44/27
65 858.5 586.8 23/14
66 871.7 595.8 43/26
67 884.9 604.9 5/3
68 898.1 613.9 42/25, 47/28
69 911.4 622.9 22/13
70 924.6 631.9 29/17
71 937.8 641 43/25
72 951 650 26/15, 45/26
73 964.2 659
74 977.4 668.1 44/25, 51/29
75 990.6 677.1 39/22
76 1003.8 686.1 25/14
77 1017 695.1 9/5
78 1030.2 704.2 49/27
79 1043.4 713.2 42/23
80 1056.6 722.2 35/19, 46/25
81 1069.8 731.3
82 1083.1 740.3 43/23
83 1096.3 749.3 49/26
84 1109.5 758.3 55/29
85 1122.7 767.4 44/23
86 1135.9 776.4 27/14, 52/27
87 1149.1 785.4 33/17
88 1162.3 794.4 45/23, 47/24
89 1175.5 803.5
90 1188.7 812.5
91 1201.9 821.5
92 1215.1 830.6
93 1228.3 839.6
94 1241.6 848.6 41/20, 43/21
95 1254.8 857.6
96 1268 866.7 52/25
97 1281.2 875.7 44/21
98 1294.4 884.7 19/9
99 1307.6 893.8
100 1320.8 902.8 15/7
101 1334 911.8 54/25
102 1347.2 920.8 37/17
103 1360.4 929.9
104 1373.6 938.9 42/19
105 1386.8 947.9 49/22
106 1400.1 956.9
107 1413.3 966 43/19, 52/23
108 1426.5 975 41/18
109 1439.7 984
110 1452.9 993.1 44/19
111 1466.1 1002.1 7/3
112 1479.3 1011.1 47/20
113 1492.5 1020.1 45/19
114 1505.7 1029.2 31/13
115 1518.9 1038.2
116 1532.1 1047.2 46/19
117 1545.3 1056.3
118 1558.5 1065.3
119 1571.8 1074.3
120 1585 1083.3 5/2
121 1598.2 1092.4
122 1611.4 1101.4 33/13
123 1624.6 1110.4 23/9
124 1637.8 1119.4
125 1651 1128.5
126 1664.2 1137.5 34/13
127 1677.4 1146.5 29/11
128 1690.6 1155.6
129 1703.8 1164.6
130 1717 1173.6
131 1730.3 1182.6 19/7
132 1743.5 1191.7 52/19
133 1756.7 1200.7
134 1769.9 1209.7 25/9
135 1783.1 1218.8 14/5
136 1796.3 1227.8
137 1809.5 1236.8 37/13, 54/19
138 1822.7 1245.8 43/15
139 1835.9 1254.9 26/9
140 1849.1 1263.9
141 1862.3 1272.9 44/15
142 1875.5 1281.9
143 1888.7 1291
144 1902 1300 3/1

Harmonics

Approximation of prime harmonics in 144edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.93 +0.00 +0.58 -0.78 -4.00 -2.63 -4.78 +0.78 +0.22
Relative (%) +14.6 +0.0 +4.4 -5.9 -30.3 -19.9 -36.2 +5.9 +1.7
Steps
(reduced)
91
(91)
144
(0)
211
(67)
255
(111)
314
(26)
336
(48)
371
(83)
386
(98)
411
(123)
Approximation of odd harmonics in 144edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) +1.16 +0.00 -4.84 -1.43 -4.00 -0.20 -3.95 -2.63 +3.24 +0.04 +0.58
Relative (%) +8.8 +0.0 -36.6 -10.8 -30.3 -1.5 -29.9 -19.9 +24.6 +0.3 +4.4
Steps
(reduced)
422
(134)
432
(0)
441
(9)
450
(18)
458
(26)
466
(34)
473
(41)
480
(48)
487
(55)
493
(61)
499
(67)