144edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 143edt 144edt 145edt →
Prime factorization 24 × 32
Step size 13.208¢ 
Octave 91\144edt (1201.93¢)
Consistency limit 10
Distinct consistency limit 10

144 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 144edt or 144ed3), is a nonoctave tuning system that divides the interval of 3/1 into 144 equal parts of about 13.2 ¢ each. Each step represents a frequency ratio of 31/144, or the 144th root of 3.

144edt is notable for being the first edt that is consistent to the no-twos 37-throdd limit, due to being highly accurate in the 3.5.7 subgroup while having a flat tendency for most higher primes up to 37; this record is not matched again until 316edt and not surpassed until 493edt (the latter essentially being a slight octave compression of 311edo).

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 13.2
2 26.4
3 39.6 43/42, 44/43, 45/44, 46/45
4 52.8 34/33
5 66 27/26
6 79.2 22/21, 45/43
7 92.5 19/18, 39/37
8 105.7 50/47
9 118.9 15/14
10 132.1 27/25, 41/38, 55/51
11 145.3 25/23, 37/34
12 158.5 23/21, 34/31
13 171.7 21/19
14 184.9 49/44
15 198.1 37/33, 46/41
16 211.3 26/23, 35/31
17 224.5 33/29, 41/36, 49/43
18 237.7 31/27, 39/34, 47/41
19 251 52/45
20 264.2
21 277.4 27/23
22 290.6 13/11
23 303.8 31/26, 56/47
24 317 6/5
25 330.2 23/19, 52/43
26 343.4 50/41
27 356.6 43/35
28 369.8 26/21
29 383
30 396.2 39/31, 44/35, 49/39
31 409.4 19/15
32 422.7 37/29
33 435.9 9/7
34 449.1 35/27
35 462.3 47/36
36 475.5 25/19, 54/41
37 488.7
38 501.9
39 515.1 35/26
40 528.3 19/14
41 541.5 26/19, 41/30
42 554.7 51/37
43 567.9 25/18, 43/31
44 581.2 7/5
45 594.4 31/22, 55/39
46 607.6 27/19, 44/31
47 620.8
48 634 49/34
49 647.2
50 660.4 41/28
51 673.6 31/21
52 686.8 52/35, 55/37
53 700
54 713.2
55 726.4 35/23, 38/25
56 739.6 23/15
57 752.9 17/11
58 766.1 14/9
59 779.3
60 792.5 49/31
61 805.7 43/27
62 818.9
63 832.1 55/34
64 845.3 44/27
65 858.5 23/14
66 871.7 43/26
67 884.9 5/3
68 898.1 42/25, 47/28
69 911.4 22/13
70 924.6 29/17
71 937.8 43/25
72 951 26/15, 45/26
73 964.2
74 977.4 44/25, 51/29
75 990.6 39/22
76 1003.8 25/14
77 1017 9/5
78 1030.2 49/27
79 1043.4 42/23
80 1056.6 35/19, 46/25
81 1069.8
82 1083.1 43/23
83 1096.3 49/26
84 1109.5 55/29
85 1122.7 44/23
86 1135.9 27/14, 52/27
87 1149.1 33/17
88 1162.3 45/23, 47/24
89 1175.5
90 1188.7
91 1201.9
92 1215.1
93 1228.3
94 1241.6 41/20, 43/21
95 1254.8
96 1268 52/25
97 1281.2 44/21
98 1294.4 19/9
99 1307.6
100 1320.8 15/7
101 1334 54/25
102 1347.2 37/17
103 1360.4
104 1373.6 42/19
105 1386.8 49/22
106 1400.1
107 1413.3 43/19, 52/23
108 1426.5 41/18
109 1439.7
110 1452.9 44/19
111 1466.1 7/3
112 1479.3 47/20
113 1492.5 45/19
114 1505.7 31/13
115 1518.9
116 1532.1 46/19
117 1545.3
118 1558.5
119 1571.8
120 1585 5/2
121 1598.2
122 1611.4 33/13
123 1624.6 23/9
124 1637.8
125 1651
126 1664.2 34/13
127 1677.4 29/11
128 1690.6
129 1703.8
130 1717
131 1730.3 19/7
132 1743.5 52/19
133 1756.7
134 1769.9 25/9
135 1783.1 14/5
136 1796.3
137 1809.5 37/13, 54/19
138 1822.7 43/15
139 1835.9 26/9
140 1849.1
141 1862.3 44/15
142 1875.5
143 1888.7
144 1902 3/1

Harmonics

Approximation of prime harmonics in 144edt
Harmonic 2 3 5 7 11 13 17 19 23
Error Absolute (¢) +1.93 +0.00 +0.58 -0.78 -4.00 -2.63 -4.78 +0.78 +0.22
Relative (%) +14.6 +0.0 +4.4 -5.9 -30.3 -19.9 -36.2 +5.9 +1.7
Steps
(reduced)
91
(91)
144
(0)
211
(67)
255
(111)
314
(26)
336
(48)
371
(83)
386
(98)
411
(123)
Approximation of odd harmonics in 144edt
Harmonic 25 27 29 31 33 35 37 39 41 43 45
Error Absolute (¢) +1.16 +0.00 -4.84 -1.43 -4.00 -0.20 -3.95 -2.63 +3.24 +0.04 +0.58
Relative (%) +8.8 +0.0 -36.6 -10.8 -30.3 -1.5 -29.9 -19.9 +24.6 +0.3 +4.4
Steps
(reduced)
422
(134)
432
(0)
441
(9)
450
(18)
458
(26)
466
(34)
473
(41)
480
(48)
487
(55)
493
(61)
499
(67)