143edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 142edt143edt144edt →
Prime factorization 11 × 13
Step size 13.3004¢ 
Octave 90\143edt (1197.03¢)
Consistency limit 7
Distinct consistency limit 7

143 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 143edt or 143ed3), is a nonoctave tuning system that divides the interval of 3/1 into 143 equal parts of about 13.3 ¢ each. Each step represents a frequency ratio of 31/143, or the 143rd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.3
2 26.601
3 39.901 45/44
4 53.202 34/33
5 66.502 27/26
6 79.802 22/21
7 93.103 19/18
8 106.403
9 119.703 15/14
10 133.004 41/38
11 146.304 37/34, 49/45
12 159.605 34/31, 45/41
13 172.905 21/19
14 186.205 49/44
15 199.506 37/33, 46/41, 55/49
16 212.806 26/23
17 226.107 41/36
18 239.407 31/27, 54/47
19 252.707 22/19
20 266.008 7/6
21 279.308
22 292.608 45/38
23 305.909 31/26, 37/31
24 319.209
25 332.51
26 345.81 11/9
27 359.11
28 372.411
29 385.711 5/4
30 399.012 34/27, 39/31
31 412.312 33/26, 52/41
32 425.612 23/18
33 438.913 49/38
34 452.213
35 465.513 17/13, 55/42
36 478.814 29/22
37 492.114
38 505.415
39 518.715
40 532.015
41 545.316 37/27, 48/35
42 558.616 29/21
43 571.917
44 585.217
45 598.517 41/29
46 611.818 37/26, 47/33
47 625.118 33/23
48 638.418
49 651.719 35/24
50 665.019
51 678.32
52 691.62
53 704.92
54 718.221
55 731.521 29/19
56 744.822
57 758.122
58 771.422 25/16
59 784.723
60 798.023 46/29
61 811.323
62 824.624 29/18, 37/23
63 837.924
64 851.225 18/11
65 864.525
66 877.825
67 891.126
68 904.426
69 917.727
70 931.027
71 944.327
72 957.628
73 970.928
74 984.228
75 997.529
76 1010.829 52/29
77 1024.13 47/26
78 1037.43
79 1050.73 11/6
80 1064.031
81 1077.331 41/22, 54/29
82 1090.632
83 1103.932
84 1117.232
85 1130.533 48/25
86 1143.833
87 1157.133 41/21
88 1170.434 55/28
89 1183.734
90 1197.035
91 1210.335
92 1223.635
93 1236.936 47/23, 49/24
94 1250.236
95 1263.537
96 1276.837 23/11
97 1290.137
98 1303.438
99 1316.738
100 1330.038 41/19
101 1343.339
102 1356.639 35/16, 46/21
103 1369.94
104 1383.24
105 1396.54
106 1409.841
107 1423.141
108 1436.442 39/17, 55/24
109 1449.742
110 1463.042
111 1476.343 54/23
112 1489.643 26/11
113 1502.943 31/13
114 1516.244 12/5
115 1529.544 46/19
116 1542.845
117 1556.145 27/11
118 1569.445 47/19, 52/21
119 1582.746
120 1596.046
121 1609.347 38/15
122 1622.647
123 1635.947 18/7
124 1649.248
125 1662.548 47/18
126 1675.848
127 1689.149
128 1702.449
129 1715.75
130 1729.05 19/7
131 1742.35 41/15, 52/19
132 1755.651
133 1768.951
134 1782.252 14/5
135 1795.552
136 1808.852 54/19
137 1822.153
138 1835.453 26/9
139 1848.753
140 1862.054 44/15
141 1875.354
142 1888.655
143 1901.955 3/1

Harmonics

Approximation of harmonics in 143edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.97 +0.00 -5.93 -6.53 -2.97 -3.83 +4.40 +0.00 +3.80 -1.60 -5.93
Relative (%) -22.3 +0.0 -44.6 -49.1 -22.3 -28.8 +33.1 +0.0 +28.6 -12.0 -44.6
Steps
(reduced)
90
(90)
143
(0)
180
(37)
209
(66)
233
(90)
253
(110)
271
(128)
286
(0)
300
(14)
312
(26)
323
(37)
Approximation of harmonics in 143edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.80 +6.51 -6.53 +1.44 +2.89 -2.97 -3.47 +0.84 -3.83 -4.56 -1.72
Relative (%) +13.5 +48.9 -49.1 +10.8 +21.7 -22.3 -26.1 +6.3 -28.8 -34.3 -12.9
Steps
(reduced)
334
(48)
344
(58)
352
(66)
361
(75)
369
(83)
376
(90)
383
(97)
390
(104)
396
(110)
402
(116)
408
(122)