142edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 141edt 142edt 143edt →
Prime factorization 2 × 71
Step size 13.394¢ 
Octave 90\142edt (1205.46¢) (→45\71edt)
Consistency limit 2
Distinct consistency limit 2

142 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 142edt or 142ed3), is a nonoctave tuning system that divides the interval of 3/1 into 142 equal parts of about 13.4⁠ ⁠¢ each. Each step represents a frequency ratio of 31/142, or the 142nd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.4 9.2
2 26.8 18.3
3 40.2 27.5
4 53.6 36.6
5 67 45.8
6 80.4 54.9 22/21
7 93.8 64.1 19/18
8 107.2 73.2 33/31, 50/47
9 120.5 82.4
10 133.9 91.5 27/25
11 147.3 100.7 37/34
12 160.7 109.9 34/31, 45/41
13 174.1 119 21/19
14 187.5 128.2 39/35, 49/44
15 200.9 137.3
16 214.3 146.5
17 227.7 155.6
18 241.1 164.8 54/47
19 254.5 173.9 22/19
20 267.9 183.1 7/6
21 281.3 192.3
22 294.7 201.4 51/43
23 308.1 210.6 55/46
24 321.5 219.7 47/39
25 334.9 228.9
26 348.2 238 11/9
27 361.6 247.2 37/30
28 375 256.3 41/33
29 388.4 265.5
30 401.8 274.6 29/23
31 415.2 283.8 47/37
32 428.6 293 50/39
33 442 302.1
34 455.4 311.3 13/10
35 468.8 320.4
36 482.2 329.6 33/25
37 495.6 338.7
38 509 347.9 47/35, 55/41
39 522.4 357 23/17, 50/37
40 535.8 366.2 15/11
41 549.2 375.4
42 562.6 384.5 18/13
43 575.9 393.7 46/33
44 589.3 402.8
45 602.7 412
46 616.1 421.1 10/7
47 629.5 430.3
48 642.9 439.4
49 656.3 448.6 19/13
50 669.7 457.7
51 683.1 466.9 43/29, 46/31
52 696.5 476.1
53 709.9 485.2
54 723.3 494.4 41/27
55 736.7 503.5
56 750.1 512.7 54/35
57 763.5 521.8
58 776.9 531 47/30
59 790.2 540.1 30/19
60 803.6 549.3 35/22
61 817 558.5
62 830.4 567.6 21/13
63 843.8 576.8
64 857.2 585.9 41/25
65 870.6 595.1
66 884 604.2 5/3
67 897.4 613.4
68 910.8 622.5 22/13
69 924.2 631.7 29/17
70 937.6 640.8 43/25
71 951 650
72 964.4 659.2
73 977.8 668.3 51/29
74 991.2 677.5 39/22, 55/31
75 1004.6 686.6
76 1017.9 695.8 9/5
77 1031.3 704.9
78 1044.7 714.1
79 1058.1 723.2 35/19
80 1071.5 732.4 13/7
81 1084.9 741.5
82 1098.3 750.7 49/26
83 1111.7 759.9 19/10
84 1125.1 769
85 1138.5 778.2
86 1151.9 787.3 35/18
87 1165.3 796.5
88 1178.7 805.6
89 1192.1 814.8
90 1205.5 823.9
91 1218.9 833.1
92 1232.3 842.3 55/27
93 1245.6 851.4 39/19
94 1259 860.6
95 1272.4 869.7
96 1285.8 878.9 21/10
97 1299.2 888
98 1312.6 897.2 47/22
99 1326 906.3
100 1339.4 915.5 13/6
101 1352.8 924.6
102 1366.2 933.8 11/5
103 1379.6 943 51/23
104 1393 952.1
105 1406.4 961.3
106 1419.8 970.4 25/11
107 1433.2 979.6
108 1446.6 988.7 30/13
109 1460 997.9
110 1473.3 1007
111 1486.7 1016.2
112 1500.1 1025.4
113 1513.5 1034.5
114 1526.9 1043.7
115 1540.3 1052.8
116 1553.7 1062 27/11
117 1567.1 1071.1 47/19
118 1580.5 1080.3
119 1593.9 1089.4
120 1607.3 1098.6 43/17
121 1620.7 1107.7
122 1634.1 1116.9 18/7
123 1647.5 1126.1
124 1660.9 1135.2 47/18
125 1674.3 1144.4 50/19
126 1687.7 1153.5
127 1701 1162.7
128 1714.4 1171.8 35/13
129 1727.8 1181 19/7
130 1741.2 1190.1 41/15
131 1754.6 1199.3
132 1768 1208.5 25/9
133 1781.4 1217.6
134 1794.8 1226.8 31/11
135 1808.2 1235.9 54/19
136 1821.6 1245.1
137 1835 1254.2
138 1848.4 1263.4
139 1861.8 1272.5
140 1875.2 1281.7
141 1888.6 1290.8
142 1902 1300 3/1

Harmonics

Approximation of harmonics in 142edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.46 +0.00 -2.47 -0.35 +5.46 +6.47 +3.00 +0.00 +5.11 +0.84 -2.47
Relative (%) +40.8 +0.0 -18.4 -2.6 +40.8 +48.3 +22.4 +0.0 +38.2 +6.3 -18.4
Steps
(reduced)
90
(90)
142
(0)
179
(37)
208
(66)
232
(90)
252
(110)
269
(127)
284
(0)
298
(14)
310
(26)
321
(37)
Approximation of harmonics in 142edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.30 -1.46 -0.35 -4.93 -2.73 +5.46 +5.62 -2.82 +6.47 +6.30 -3.68
Relative (%) +47.0 -10.9 -2.6 -36.8 -20.4 +40.8 +42.0 -21.0 +48.3 +47.0 -27.5
Steps
(reduced)
332
(48)
341
(57)
350
(66)
358
(74)
366
(82)
374
(90)
381
(97)
387
(103)
394
(110)
400
(116)
405
(121)