142edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 141edt142edt143edt →
Prime factorization 2 × 71
Step size 13.394¢ 
Octave 90\142edt (1205.46¢) (→45\71edt)
Consistency limit 2
Distinct consistency limit 2

142 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 142edt or 142ed3), is a nonoctave tuning system that divides the interval of 3/1 into 142 equal parts of about 13.4 ¢ each. Each step represents a frequency ratio of 31/142, or the 142nd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.394
2 26.788
3 40.182
4 53.576
5 66.97
6 80.364 22/21
7 93.758 19/18
8 107.152 33/31, 50/47
9 120.546
10 133.94 27/25
11 147.335 37/34
12 160.729 34/31, 45/41
13 174.123 21/19
14 187.517 39/35, 49/44
15 200.911
16 214.305
17 227.699
18 241.093 54/47
19 254.487 22/19
20 267.881 7/6
21 281.275
22 294.669 51/43
23 308.063 55/46
24 321.457 47/39
25 334.851
26 348.245 11/9
27 361.639 37/30
28 375.033 41/33
29 388.427
30 401.821 29/23
31 415.216 47/37
32 428.61 50/39
33 442.004
34 455.398 13/10
35 468.792
36 482.186 33/25
37 495.58
38 508.974 47/35, 55/41
39 522.368 23/17, 50/37
40 535.762 15/11
41 549.156
42 562.55 18/13
43 575.944 46/33
44 589.338
45 602.732
46 616.126 10/7
47 629.52
48 642.914
49 656.308 19/13
50 669.702
51 683.097 43/29, 46/31
52 696.491
53 709.885
54 723.279 41/27
55 736.673
56 750.067 54/35
57 763.461
58 776.855 47/30
59 790.249 30/19
60 803.643 35/22
61 817.037
62 830.431 21/13
63 843.825
64 857.219 41/25
65 870.613
66 884.007 5/3
67 897.401
68 910.795 22/13
69 924.189 29/17
70 937.583 43/25
71 950.978
72 964.372
73 977.766 51/29
74 991.16 39/22, 55/31
75 1004.554
76 1017.948 9/5
77 1031.342
78 1044.736
79 1058.13 35/19
80 1071.524 13/7
81 1084.918
82 1098.312 49/26
83 1111.706 19/10
84 1125.1
85 1138.494
86 1151.888 35/18
87 1165.282
88 1178.676
89 1192.07
90 1205.464
91 1218.858
92 1232.253 55/27
93 1245.647 39/19
94 1259.041
95 1272.435
96 1285.829 21/10
97 1299.223
98 1312.617 47/22
99 1326.011
100 1339.405 13/6
101 1352.799
102 1366.193 11/5
103 1379.587 51/23
104 1392.981
105 1406.375
106 1419.769 25/11
107 1433.163
108 1446.557 30/13
109 1459.951
110 1473.345
111 1486.739
112 1500.134
113 1513.528
114 1526.922
115 1540.316
116 1553.71 27/11
117 1567.104 47/19
118 1580.498
119 1593.892
120 1607.286 43/17
121 1620.68
122 1634.074 18/7
123 1647.468
124 1660.862 47/18
125 1674.256 50/19
126 1687.65
127 1701.044
128 1714.438 35/13
129 1727.832 19/7
130 1741.226 41/15
131 1754.62
132 1768.015 25/9
133 1781.409
134 1794.803 31/11
135 1808.197 54/19
136 1821.591
137 1834.985
138 1848.379
139 1861.773
140 1875.167
141 1888.561
142 1901.955 3/1

Harmonics

Approximation of harmonics in 142edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +5.46 +0.00 -2.47 -0.35 +5.46 +6.47 +3.00 +0.00 +5.11 +0.84 -2.47
Relative (%) +40.8 +0.0 -18.4 -2.6 +40.8 +48.3 +22.4 +0.0 +38.2 +6.3 -18.4
Steps
(reduced)
90
(90)
142
(0)
179
(37)
208
(66)
232
(90)
252
(110)
269
(127)
284
(0)
298
(14)
310
(26)
321
(37)
Approximation of harmonics in 142edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.30 -1.46 -0.35 -4.93 -2.73 +5.46 +5.62 -2.82 +6.47 +6.30 -3.68
Relative (%) +47.0 -10.9 -2.6 -36.8 -20.4 +40.8 +42.0 -21.0 +48.3 +47.0 -27.5
Steps
(reduced)
332
(48)
341
(57)
350
(66)
358
(74)
366
(82)
374
(90)
381
(97)
387
(103)
394
(110)
400
(116)
405
(121)