142edt
Jump to navigation
Jump to search
Prime factorization
2 × 71
Step size
13.394¢
Octave
90\142edt (1205.46¢) (→45\71edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 141edt | 142edt | 143edt → |
142 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 142edt or 142ed3), is a nonoctave tuning system that divides the interval of 3/1 into 142 equal parts of about 13.4 ¢ each. Each step represents a frequency ratio of 31/142, or the 142nd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 13.4 | 9.2 | |
2 | 26.8 | 18.3 | |
3 | 40.2 | 27.5 | |
4 | 53.6 | 36.6 | |
5 | 67 | 45.8 | |
6 | 80.4 | 54.9 | 22/21 |
7 | 93.8 | 64.1 | 19/18 |
8 | 107.2 | 73.2 | 33/31, 50/47 |
9 | 120.5 | 82.4 | |
10 | 133.9 | 91.5 | 27/25 |
11 | 147.3 | 100.7 | 37/34 |
12 | 160.7 | 109.9 | 34/31, 45/41 |
13 | 174.1 | 119 | 21/19 |
14 | 187.5 | 128.2 | 39/35, 49/44 |
15 | 200.9 | 137.3 | |
16 | 214.3 | 146.5 | |
17 | 227.7 | 155.6 | |
18 | 241.1 | 164.8 | 54/47 |
19 | 254.5 | 173.9 | 22/19 |
20 | 267.9 | 183.1 | 7/6 |
21 | 281.3 | 192.3 | |
22 | 294.7 | 201.4 | 51/43 |
23 | 308.1 | 210.6 | 55/46 |
24 | 321.5 | 219.7 | 47/39 |
25 | 334.9 | 228.9 | |
26 | 348.2 | 238 | 11/9 |
27 | 361.6 | 247.2 | 37/30 |
28 | 375 | 256.3 | 41/33 |
29 | 388.4 | 265.5 | |
30 | 401.8 | 274.6 | 29/23 |
31 | 415.2 | 283.8 | 47/37 |
32 | 428.6 | 293 | 50/39 |
33 | 442 | 302.1 | |
34 | 455.4 | 311.3 | 13/10 |
35 | 468.8 | 320.4 | |
36 | 482.2 | 329.6 | 33/25 |
37 | 495.6 | 338.7 | |
38 | 509 | 347.9 | 47/35, 55/41 |
39 | 522.4 | 357 | 23/17, 50/37 |
40 | 535.8 | 366.2 | 15/11 |
41 | 549.2 | 375.4 | |
42 | 562.6 | 384.5 | 18/13 |
43 | 575.9 | 393.7 | 46/33 |
44 | 589.3 | 402.8 | |
45 | 602.7 | 412 | |
46 | 616.1 | 421.1 | 10/7 |
47 | 629.5 | 430.3 | |
48 | 642.9 | 439.4 | |
49 | 656.3 | 448.6 | 19/13 |
50 | 669.7 | 457.7 | |
51 | 683.1 | 466.9 | 43/29, 46/31 |
52 | 696.5 | 476.1 | |
53 | 709.9 | 485.2 | |
54 | 723.3 | 494.4 | 41/27 |
55 | 736.7 | 503.5 | |
56 | 750.1 | 512.7 | 54/35 |
57 | 763.5 | 521.8 | |
58 | 776.9 | 531 | 47/30 |
59 | 790.2 | 540.1 | 30/19 |
60 | 803.6 | 549.3 | 35/22 |
61 | 817 | 558.5 | |
62 | 830.4 | 567.6 | 21/13 |
63 | 843.8 | 576.8 | |
64 | 857.2 | 585.9 | 41/25 |
65 | 870.6 | 595.1 | |
66 | 884 | 604.2 | 5/3 |
67 | 897.4 | 613.4 | |
68 | 910.8 | 622.5 | 22/13 |
69 | 924.2 | 631.7 | 29/17 |
70 | 937.6 | 640.8 | 43/25 |
71 | 951 | 650 | |
72 | 964.4 | 659.2 | |
73 | 977.8 | 668.3 | 51/29 |
74 | 991.2 | 677.5 | 39/22, 55/31 |
75 | 1004.6 | 686.6 | |
76 | 1017.9 | 695.8 | 9/5 |
77 | 1031.3 | 704.9 | |
78 | 1044.7 | 714.1 | |
79 | 1058.1 | 723.2 | 35/19 |
80 | 1071.5 | 732.4 | 13/7 |
81 | 1084.9 | 741.5 | |
82 | 1098.3 | 750.7 | 49/26 |
83 | 1111.7 | 759.9 | 19/10 |
84 | 1125.1 | 769 | |
85 | 1138.5 | 778.2 | |
86 | 1151.9 | 787.3 | 35/18 |
87 | 1165.3 | 796.5 | |
88 | 1178.7 | 805.6 | |
89 | 1192.1 | 814.8 | |
90 | 1205.5 | 823.9 | |
91 | 1218.9 | 833.1 | |
92 | 1232.3 | 842.3 | 55/27 |
93 | 1245.6 | 851.4 | 39/19 |
94 | 1259 | 860.6 | |
95 | 1272.4 | 869.7 | |
96 | 1285.8 | 878.9 | 21/10 |
97 | 1299.2 | 888 | |
98 | 1312.6 | 897.2 | 47/22 |
99 | 1326 | 906.3 | |
100 | 1339.4 | 915.5 | 13/6 |
101 | 1352.8 | 924.6 | |
102 | 1366.2 | 933.8 | 11/5 |
103 | 1379.6 | 943 | 51/23 |
104 | 1393 | 952.1 | |
105 | 1406.4 | 961.3 | |
106 | 1419.8 | 970.4 | 25/11 |
107 | 1433.2 | 979.6 | |
108 | 1446.6 | 988.7 | 30/13 |
109 | 1460 | 997.9 | |
110 | 1473.3 | 1007 | |
111 | 1486.7 | 1016.2 | |
112 | 1500.1 | 1025.4 | |
113 | 1513.5 | 1034.5 | |
114 | 1526.9 | 1043.7 | |
115 | 1540.3 | 1052.8 | |
116 | 1553.7 | 1062 | 27/11 |
117 | 1567.1 | 1071.1 | 47/19 |
118 | 1580.5 | 1080.3 | |
119 | 1593.9 | 1089.4 | |
120 | 1607.3 | 1098.6 | 43/17 |
121 | 1620.7 | 1107.7 | |
122 | 1634.1 | 1116.9 | 18/7 |
123 | 1647.5 | 1126.1 | |
124 | 1660.9 | 1135.2 | 47/18 |
125 | 1674.3 | 1144.4 | 50/19 |
126 | 1687.7 | 1153.5 | |
127 | 1701 | 1162.7 | |
128 | 1714.4 | 1171.8 | 35/13 |
129 | 1727.8 | 1181 | 19/7 |
130 | 1741.2 | 1190.1 | 41/15 |
131 | 1754.6 | 1199.3 | |
132 | 1768 | 1208.5 | 25/9 |
133 | 1781.4 | 1217.6 | |
134 | 1794.8 | 1226.8 | 31/11 |
135 | 1808.2 | 1235.9 | 54/19 |
136 | 1821.6 | 1245.1 | |
137 | 1835 | 1254.2 | |
138 | 1848.4 | 1263.4 | |
139 | 1861.8 | 1272.5 | |
140 | 1875.2 | 1281.7 | |
141 | 1888.6 | 1290.8 | |
142 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.46 | +0.00 | -2.47 | -0.35 | +5.46 | +6.47 | +3.00 | +0.00 | +5.11 | +0.84 | -2.47 |
Relative (%) | +40.8 | +0.0 | -18.4 | -2.6 | +40.8 | +48.3 | +22.4 | +0.0 | +38.2 | +6.3 | -18.4 | |
Steps (reduced) |
90 (90) |
142 (0) |
179 (37) |
208 (66) |
232 (90) |
252 (110) |
269 (127) |
284 (0) |
298 (14) |
310 (26) |
321 (37) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.30 | -1.46 | -0.35 | -4.93 | -2.73 | +5.46 | +5.62 | -2.82 | +6.47 | +6.30 | -3.68 |
Relative (%) | +47.0 | -10.9 | -2.6 | -36.8 | -20.4 | +40.8 | +42.0 | -21.0 | +48.3 | +47.0 | -27.5 | |
Steps (reduced) |
332 (48) |
341 (57) |
350 (66) |
358 (74) |
366 (82) |
374 (90) |
381 (97) |
387 (103) |
394 (110) |
400 (116) |
405 (121) |