141edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 140edt141edt142edt →
Prime factorization 3 × 47
Step size 13.489¢ 
Octave 89\141edt (1200.52¢)
Consistency limit 11
Distinct consistency limit 11

141 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 141edt or 141ed3), is a nonoctave tuning system that divides the interval of 3/1 into 141 equal parts of about 13.5 ¢ each. Each step represents a frequency ratio of 31/141, or the 141st root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.489
2 26.978
3 40.467 42/41, 43/42, 44/43, 45/44
4 53.956 32/31, 33/32
5 67.445
6 80.934 22/21, 43/41
7 94.423 19/18
8 107.912 33/31
9 121.401 44/41
10 134.89
11 148.379 49/45
12 161.869 45/41
13 175.358 31/28, 52/47
14 188.847 29/26, 48/43
15 202.336 9/8
16 215.825 17/15
17 229.314
18 242.803 38/33
19 256.292 51/44
20 269.781
21 283.27 33/28
22 296.759 19/16, 51/43
23 310.248 49/41
24 323.737 41/34, 47/39
25 337.226 17/14
26 350.715 49/40
27 364.204 21/17
28 377.693 46/37, 51/41
29 391.182
30 404.671 24/19
31 418.16 14/11
32 431.649
33 445.138 22/17
34 458.627 43/33
35 472.116 21/16
36 485.606 41/31, 45/34
37 499.095 4/3
38 512.584 39/29, 43/32
39 526.073 42/31
40 539.562 41/30
41 553.051
42 566.54 43/31
43 580.029
44 593.518 31/22
45 607.007 27/19, 44/31
46 620.496
47 633.985 49/34
48 647.474 16/11
49 660.963 41/28
50 674.452 31/21
51 687.941
52 701.43 3/2
53 714.919
54 728.408 32/21
55 741.897 43/28
56 755.386 48/31
57 768.875
58 782.364 11/7
59 795.854 19/12
60 809.343
61 822.832 37/23, 45/28
62 836.321 47/29
63 849.81 49/30
64 863.299 28/17, 51/31
65 876.788
66 890.277
67 903.766 32/19
68 917.255 17/10
69 930.744
70 944.233
71 957.722
72 971.211
73 984.7 30/17
74 998.189
75 1011.678 52/29
76 1025.167 38/21, 47/26
77 1038.656 31/17, 51/28
78 1052.145
79 1065.634
80 1079.123 28/15, 41/22
81 1092.612
82 1106.101 36/19
83 1119.591 21/11
84 1133.08 52/27
85 1146.569 31/16
86 1160.058 43/22
87 1173.547
88 1187.036
89 1200.525 2/1
90 1214.014
91 1227.503
92 1240.992 43/21
93 1254.481 33/16
94 1267.97
95 1281.459 44/21
96 1294.948 19/9
97 1308.437
98 1321.926
99 1335.415
100 1348.904
101 1362.393
102 1375.882 31/14
103 1389.371 29/13
104 1402.86 9/4
105 1416.349 34/15
106 1429.839 16/7
107 1443.328
108 1456.817 51/22
109 1470.306
110 1483.795 33/14
111 1497.284 19/8
112 1510.773
113 1524.262 41/17
114 1537.751 17/7
115 1551.24 49/20
116 1564.729 42/17
117 1578.218
118 1591.707
119 1605.196 43/17, 48/19
120 1618.685 28/11
121 1632.174
122 1645.663 44/17
123 1659.152
124 1672.641
125 1686.13 45/17
126 1699.619 8/3
127 1713.108 43/16
128 1726.597
129 1740.086 41/15
130 1753.576
131 1767.065
132 1780.554
133 1794.043 31/11
134 1807.532 54/19
135 1821.021
136 1834.51
137 1847.999 32/11
138 1861.488 41/14, 44/15
139 1874.977
140 1888.466
141 1901.955 3/1

Harmonics

Approximation of harmonics in 141edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.52 +0.00 +1.05 +5.92 +0.52 +3.43 +1.57 +0.00 +6.44 +3.31 +1.05
Relative (%) +3.9 +0.0 +7.8 +43.9 +3.9 +25.5 +11.7 +0.0 +47.8 +24.5 +7.8
Steps
(reduced)
89
(89)
141
(0)
178
(37)
207
(66)
230
(89)
250
(109)
267
(126)
282
(0)
296
(14)
308
(26)
319
(37)
Approximation of harmonics in 141edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +3.96 +5.92 +2.10 +5.06 +0.52 +1.35 -6.52 +3.43 +3.83 -5.68
Relative (%) -19.5 +29.4 +43.9 +15.6 +37.5 +3.9 +10.0 -48.3 +25.5 +28.4 -42.1
Steps
(reduced)
329
(47)
339
(57)
348
(66)
356
(74)
364
(82)
371
(89)
378
(96)
384
(102)
391
(109)
397
(115)
402
(120)