140edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 139edt 140edt 141edt →
Prime factorization 22 × 5 × 7
Step size 13.5854¢ 
Octave 88\140edt (1195.51¢) (→22\35edt)
Consistency limit 2
Distinct consistency limit 2

140 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 140edt or 140ed3), is a nonoctave tuning system that divides the interval of 3/1 into 140 equal parts of about 13.6⁠ ⁠¢ each. Each step represents a frequency ratio of 31/140, or the 140th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.6 9.3
2 27.2 18.6
3 40.8 27.9 42/41, 43/42, 44/43
4 54.3 37.1
5 67.9 46.4 26/25, 51/49
6 81.5 55.7 22/21, 43/41
7 95.1 65 19/18, 37/35
8 108.7 74.3 33/31, 49/46
9 122.3 83.6 29/27, 44/41
10 135.9 92.9
11 149.4 102.1
12 163 111.4
13 176.6 120.7 41/37
14 190.2 130 29/26
15 203.8 139.3
16 217.4 148.6 17/15
17 231 157.9
18 244.5 167.1
19 258.1 176.4 29/25
20 271.7 185.7 55/47
21 285.3 195 46/39
22 298.9 204.3 44/37
23 312.5 213.6
24 326 222.9 35/29
25 339.6 232.1 45/37
26 353.2 241.4 27/22
27 366.8 250.7 21/17
28 380.4 260
29 394 269.3 49/39, 54/43
30 407.6 278.6 43/34
31 421.1 287.9 37/29
32 434.7 297.1 9/7
33 448.3 306.4 35/27
34 461.9 315.7
35 475.5 325 25/19, 54/41
36 489.1 334.3
37 502.7 343.6
38 516.2 352.9 31/23, 35/26
39 529.8 362.1 19/14
40 543.4 371.4 26/19
41 557 380.7 51/37
42 570.6 390
43 584.2 399.3 7/5
44 597.8 408.6
45 611.3 417.9 37/26, 47/33
46 624.9 427.1 33/23
47 638.5 436.4
48 652.1 445.7 51/35
49 665.7 455
50 679.3 464.3 37/25
51 692.9 473.6
52 706.4 482.9
53 720 492.1 47/31
54 733.6 501.4 29/19
55 747.2 510.7
56 760.8 520 45/29
57 774.4 529.3
58 788 538.6 41/26
59 801.5 547.9 27/17
60 815.1 557.1
61 828.7 566.4 21/13
62 842.3 575.7
63 855.9 585 41/25
64 869.5 594.3 43/26
65 883.1 603.6 5/3
66 896.6 612.9 42/25
67 910.2 622.1 22/13
68 923.8 631.4 29/17, 46/27
69 937.4 640.7 43/25
70 951 650 26/15, 45/26
71 964.6 659.3
72 978.1 668.6 44/25, 51/29
73 991.7 677.9 39/22, 55/31
74 1005.3 687.1 25/14
75 1018.9 696.4 9/5
76 1032.5 705.7 49/27
77 1046.1 715
78 1059.7 724.3
79 1073.2 733.6 13/7
80 1086.8 742.9
81 1100.4 752.1 17/9
82 1114 761.4
83 1127.6 770.7
84 1141.2 780 29/15
85 1154.8 789.3 37/19
86 1168.3 798.6
87 1181.9 807.9
88 1195.5 817.1
89 1209.1 826.4
90 1222.7 835.7
91 1236.3 845 47/23
92 1249.9 854.3 35/17
93 1263.4 863.6
94 1277 872.9 23/11
95 1290.6 882.1
96 1304.2 891.4
97 1317.8 900.7 15/7
98 1331.4 910 41/19
99 1345 919.3 37/17
100 1358.5 928.6 46/21
101 1372.1 937.9 42/19
102 1385.7 947.1 49/22
103 1399.3 956.4
104 1412.9 965.7 43/19
105 1426.5 975 41/18
106 1440.1 984.3
107 1453.6 993.6 44/19
108 1467.2 1002.9 7/3
109 1480.8 1012.1
110 1494.4 1021.4
111 1508 1030.7 43/18, 55/23
112 1521.6 1040
113 1535.1 1049.3 17/7
114 1548.7 1058.6 22/9
115 1562.3 1067.9 37/15
116 1575.9 1077.1
117 1589.5 1086.4
118 1603.1 1095.7
119 1616.7 1105
120 1630.2 1114.3
121 1643.8 1123.6
122 1657.4 1132.9
123 1671 1142.1
124 1684.6 1151.4 45/17
125 1698.2 1160.7
126 1711.8 1170
127 1725.3 1179.3
128 1738.9 1188.6
129 1752.5 1197.9
130 1766.1 1207.1
131 1779.7 1216.4
132 1793.3 1225.7 31/11
133 1806.9 1235 54/19
134 1820.4 1244.3
135 1834 1253.6 49/17
136 1847.6 1262.9
137 1861.2 1272.1 41/14
138 1874.8 1281.4
139 1888.4 1290.7
140 1902 1300 3/1

Harmonics

Approximation of harmonics in 140edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.49 +0.00 +4.61 -1.31 -4.49 +0.35 +0.13 +0.00 -5.79 +5.81 +4.61
Relative (%) -33.0 +0.0 +34.0 -9.6 -33.0 +2.6 +1.0 +0.0 -42.6 +42.8 +34.0
Steps
(reduced)
88
(88)
140
(0)
177
(37)
205
(65)
228
(88)
248
(108)
265
(125)
280
(0)
293
(13)
306
(26)
317
(37)
Approximation of harmonics in 140edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.90 -4.13 -1.31 -4.36 -0.63 -4.49 -2.99 +3.31 +0.35 +1.33 +5.88
Relative (%) +14.0 -30.4 -9.6 -32.1 -4.6 -33.0 -22.0 +24.3 +2.6 +9.8 +43.3
Steps
(reduced)
327
(47)
336
(56)
345
(65)
353
(73)
361
(81)
368
(88)
375
(95)
382
(102)
388
(108)
394
(114)
400
(120)