140edt
Jump to navigation
Jump to search
Prime factorization
22 × 5 × 7
Step size
13.5854¢
Octave
88\140edt (1195.51¢) (→22\35edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 139edt | 140edt | 141edt → |
140 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 140edt or 140ed3), is a nonoctave tuning system that divides the interval of 3/1 into 140 equal parts of about 13.6 ¢ each. Each step represents a frequency ratio of 31/140, or the 140th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 13.6 | 9.3 | |
2 | 27.2 | 18.6 | |
3 | 40.8 | 27.9 | 42/41, 43/42, 44/43 |
4 | 54.3 | 37.1 | |
5 | 67.9 | 46.4 | 26/25, 51/49 |
6 | 81.5 | 55.7 | 22/21, 43/41 |
7 | 95.1 | 65 | 19/18, 37/35 |
8 | 108.7 | 74.3 | 33/31, 49/46 |
9 | 122.3 | 83.6 | 29/27, 44/41 |
10 | 135.9 | 92.9 | |
11 | 149.4 | 102.1 | |
12 | 163 | 111.4 | |
13 | 176.6 | 120.7 | 41/37 |
14 | 190.2 | 130 | 29/26 |
15 | 203.8 | 139.3 | |
16 | 217.4 | 148.6 | 17/15 |
17 | 231 | 157.9 | |
18 | 244.5 | 167.1 | |
19 | 258.1 | 176.4 | 29/25 |
20 | 271.7 | 185.7 | 55/47 |
21 | 285.3 | 195 | 46/39 |
22 | 298.9 | 204.3 | 44/37 |
23 | 312.5 | 213.6 | |
24 | 326 | 222.9 | 35/29 |
25 | 339.6 | 232.1 | 45/37 |
26 | 353.2 | 241.4 | 27/22 |
27 | 366.8 | 250.7 | 21/17 |
28 | 380.4 | 260 | |
29 | 394 | 269.3 | 49/39, 54/43 |
30 | 407.6 | 278.6 | 43/34 |
31 | 421.1 | 287.9 | 37/29 |
32 | 434.7 | 297.1 | 9/7 |
33 | 448.3 | 306.4 | 35/27 |
34 | 461.9 | 315.7 | |
35 | 475.5 | 325 | 25/19, 54/41 |
36 | 489.1 | 334.3 | |
37 | 502.7 | 343.6 | |
38 | 516.2 | 352.9 | 31/23, 35/26 |
39 | 529.8 | 362.1 | 19/14 |
40 | 543.4 | 371.4 | 26/19 |
41 | 557 | 380.7 | 51/37 |
42 | 570.6 | 390 | |
43 | 584.2 | 399.3 | 7/5 |
44 | 597.8 | 408.6 | |
45 | 611.3 | 417.9 | 37/26, 47/33 |
46 | 624.9 | 427.1 | 33/23 |
47 | 638.5 | 436.4 | |
48 | 652.1 | 445.7 | 51/35 |
49 | 665.7 | 455 | |
50 | 679.3 | 464.3 | 37/25 |
51 | 692.9 | 473.6 | |
52 | 706.4 | 482.9 | |
53 | 720 | 492.1 | 47/31 |
54 | 733.6 | 501.4 | 29/19 |
55 | 747.2 | 510.7 | |
56 | 760.8 | 520 | 45/29 |
57 | 774.4 | 529.3 | |
58 | 788 | 538.6 | 41/26 |
59 | 801.5 | 547.9 | 27/17 |
60 | 815.1 | 557.1 | |
61 | 828.7 | 566.4 | 21/13 |
62 | 842.3 | 575.7 | |
63 | 855.9 | 585 | 41/25 |
64 | 869.5 | 594.3 | 43/26 |
65 | 883.1 | 603.6 | 5/3 |
66 | 896.6 | 612.9 | 42/25 |
67 | 910.2 | 622.1 | 22/13 |
68 | 923.8 | 631.4 | 29/17, 46/27 |
69 | 937.4 | 640.7 | 43/25 |
70 | 951 | 650 | 26/15, 45/26 |
71 | 964.6 | 659.3 | |
72 | 978.1 | 668.6 | 44/25, 51/29 |
73 | 991.7 | 677.9 | 39/22, 55/31 |
74 | 1005.3 | 687.1 | 25/14 |
75 | 1018.9 | 696.4 | 9/5 |
76 | 1032.5 | 705.7 | 49/27 |
77 | 1046.1 | 715 | |
78 | 1059.7 | 724.3 | |
79 | 1073.2 | 733.6 | 13/7 |
80 | 1086.8 | 742.9 | |
81 | 1100.4 | 752.1 | 17/9 |
82 | 1114 | 761.4 | |
83 | 1127.6 | 770.7 | |
84 | 1141.2 | 780 | 29/15 |
85 | 1154.8 | 789.3 | 37/19 |
86 | 1168.3 | 798.6 | |
87 | 1181.9 | 807.9 | |
88 | 1195.5 | 817.1 | |
89 | 1209.1 | 826.4 | |
90 | 1222.7 | 835.7 | |
91 | 1236.3 | 845 | 47/23 |
92 | 1249.9 | 854.3 | 35/17 |
93 | 1263.4 | 863.6 | |
94 | 1277 | 872.9 | 23/11 |
95 | 1290.6 | 882.1 | |
96 | 1304.2 | 891.4 | |
97 | 1317.8 | 900.7 | 15/7 |
98 | 1331.4 | 910 | 41/19 |
99 | 1345 | 919.3 | 37/17 |
100 | 1358.5 | 928.6 | 46/21 |
101 | 1372.1 | 937.9 | 42/19 |
102 | 1385.7 | 947.1 | 49/22 |
103 | 1399.3 | 956.4 | |
104 | 1412.9 | 965.7 | 43/19 |
105 | 1426.5 | 975 | 41/18 |
106 | 1440.1 | 984.3 | |
107 | 1453.6 | 993.6 | 44/19 |
108 | 1467.2 | 1002.9 | 7/3 |
109 | 1480.8 | 1012.1 | |
110 | 1494.4 | 1021.4 | |
111 | 1508 | 1030.7 | 43/18, 55/23 |
112 | 1521.6 | 1040 | |
113 | 1535.1 | 1049.3 | 17/7 |
114 | 1548.7 | 1058.6 | 22/9 |
115 | 1562.3 | 1067.9 | 37/15 |
116 | 1575.9 | 1077.1 | |
117 | 1589.5 | 1086.4 | |
118 | 1603.1 | 1095.7 | |
119 | 1616.7 | 1105 | |
120 | 1630.2 | 1114.3 | |
121 | 1643.8 | 1123.6 | |
122 | 1657.4 | 1132.9 | |
123 | 1671 | 1142.1 | |
124 | 1684.6 | 1151.4 | 45/17 |
125 | 1698.2 | 1160.7 | |
126 | 1711.8 | 1170 | |
127 | 1725.3 | 1179.3 | |
128 | 1738.9 | 1188.6 | |
129 | 1752.5 | 1197.9 | |
130 | 1766.1 | 1207.1 | |
131 | 1779.7 | 1216.4 | |
132 | 1793.3 | 1225.7 | 31/11 |
133 | 1806.9 | 1235 | 54/19 |
134 | 1820.4 | 1244.3 | |
135 | 1834 | 1253.6 | 49/17 |
136 | 1847.6 | 1262.9 | |
137 | 1861.2 | 1272.1 | 41/14 |
138 | 1874.8 | 1281.4 | |
139 | 1888.4 | 1290.7 | |
140 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.49 | +0.00 | +4.61 | -1.31 | -4.49 | +0.35 | +0.13 | +0.00 | -5.79 | +5.81 | +4.61 |
Relative (%) | -33.0 | +0.0 | +34.0 | -9.6 | -33.0 | +2.6 | +1.0 | +0.0 | -42.6 | +42.8 | +34.0 | |
Steps (reduced) |
88 (88) |
140 (0) |
177 (37) |
205 (65) |
228 (88) |
248 (108) |
265 (125) |
280 (0) |
293 (13) |
306 (26) |
317 (37) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.90 | -4.13 | -1.31 | -4.36 | -0.63 | -4.49 | -2.99 | +3.31 | +0.35 | +1.33 | +5.88 |
Relative (%) | +14.0 | -30.4 | -9.6 | -32.1 | -4.6 | -33.0 | -22.0 | +24.3 | +2.6 | +9.8 | +43.3 | |
Steps (reduced) |
327 (47) |
336 (56) |
345 (65) |
353 (73) |
361 (81) |
368 (88) |
375 (95) |
382 (102) |
388 (108) |
394 (114) |
400 (120) |