139edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 138edt139edt140edt →
Prime factorization 139 (prime)
Step size 13.6831¢ 
Octave 88\139edt (1204.12¢)
Consistency limit 2
Distinct consistency limit 2

139 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 139edt or 139ed3), is a nonoctave tuning system that divides the interval of 3/1 into 139 equal parts of about 13.7 ¢ each. Each step represents a frequency ratio of 31/139, or the 139th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.683
2 27.366
3 41.049 42/41, 43/42, 44/43
4 54.733
5 68.416 26/25, 51/49
6 82.099 22/21, 43/41
7 95.782 37/35
8 109.465 33/31
9 123.148 29/27, 44/41
10 136.831
11 150.514
12 164.198
13 177.881 41/37
14 191.564
15 205.247
16 218.93 42/37
17 232.613
18 246.296 15/13
19 259.979 43/37
20 273.663 41/35
21 287.346 46/39
22 301.029 44/37
23 314.712 6/5
24 328.395
25 342.078 28/23
26 355.761 27/22, 43/35
27 369.444
28 383.128
29 396.811 44/35
30 410.494 19/15
31 424.177 23/18
32 437.86
33 451.543
34 465.226
35 478.91 29/22
36 492.593
37 506.276
38 519.959
39 533.642
40 547.325
41 561.008 47/34
42 574.691 39/28
43 588.375
44 602.058
45 615.741
46 629.424
47 643.107
48 656.79 19/13
49 670.473 28/19
50 684.156 49/33
51 697.84
52 711.523
53 725.206 35/23, 38/25
54 738.889 23/15
55 752.572 17/11
56 766.255 14/9
57 779.938
58 793.622 49/31
59 807.305 43/27
60 820.988 45/28
61 834.671 34/21, 47/29
62 848.354
63 862.037 51/31
64 875.72
65 889.403
66 903.087
67 916.77
68 930.453
69 944.136
70 957.819
71 971.502
72 985.185
73 998.868
74 1012.552
75 1026.235
76 1039.918 31/17
77 1053.601
78 1067.284
79 1080.967 28/15
80 1094.65
81 1108.333
82 1122.017 44/23
83 1135.7 27/14
84 1149.383 33/17
85 1163.066 45/23
86 1176.749
87 1190.432
88 1204.115
89 1217.799
90 1231.482
91 1245.165 39/19
92 1258.848
93 1272.531
94 1286.214
95 1299.897
96 1313.58 47/22
97 1327.264 28/13
98 1340.947
99 1354.63
100 1368.313
101 1381.996
102 1395.679 47/21
103 1409.362
104 1423.045
105 1436.729
106 1450.412
107 1464.095
108 1477.778 54/23
109 1491.461 45/19
110 1505.144
111 1518.827
112 1532.511
113 1546.194 22/9
114 1559.877
115 1573.56
116 1587.243 5/2
117 1600.926
118 1614.609
119 1628.292
120 1641.976
121 1655.659 13/5
122 1669.342
123 1683.025 37/14
124 1696.708
125 1710.391
126 1724.074
127 1737.757
128 1751.441
129 1765.124
130 1778.807
131 1792.49 31/11
132 1806.173
133 1819.856
134 1833.539 49/17
135 1847.222
136 1860.906 41/14
137 1874.589
138 1888.272
139 1901.955 3/1

Harmonics

Approximation of harmonics in 139edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.12 +0.00 -5.45 +5.04 +4.12 -2.78 -1.34 +0.00 -4.52 -5.33 -5.45
Relative (%) +30.1 +0.0 -39.8 +36.9 +30.1 -20.3 -9.8 +0.0 -33.1 -39.0 -39.8
Steps
(reduced)
88
(88)
139
(0)
175
(36)
204
(65)
227
(88)
246
(107)
263
(124)
278
(0)
291
(13)
303
(25)
314
(36)
Approximation of harmonics in 139edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.49 +1.34 +5.04 +2.78 -6.40 +4.12 +6.29 -0.41 -2.78 -1.21 +3.93
Relative (%) +47.4 +9.8 +36.9 +20.3 -46.7 +30.1 +46.0 -3.0 -20.3 -8.9 +28.7
Steps
(reduced)
325
(47)
334
(56)
343
(65)
351
(73)
358
(80)
366
(88)
373
(95)
379
(101)
385
(107)
391
(113)
397
(119)