139edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 138edt 139edt 140edt →
Prime factorization 139 (prime)
Step size 13.6831¢ 
Octave 88\139edt (1204.12¢)
Consistency limit 2
Distinct consistency limit 2

139 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 139edt or 139ed3), is a nonoctave tuning system that divides the interval of 3/1 into 139 equal parts of about 13.7⁠ ⁠¢ each. Each step represents a frequency ratio of 31/139, or the 139th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.7 9.4
2 27.4 18.7
3 41 28.1 42/41, 43/42, 44/43
4 54.7 37.4
5 68.4 46.8 26/25, 51/49
6 82.1 56.1 22/21, 43/41
7 95.8 65.5 37/35
8 109.5 74.8 33/31
9 123.1 84.2 29/27, 44/41
10 136.8 93.5
11 150.5 102.9
12 164.2 112.2
13 177.9 121.6 41/37
14 191.6 130.9
15 205.2 140.3
16 218.9 149.6 42/37
17 232.6 159
18 246.3 168.3 15/13
19 260 177.7 43/37
20 273.7 187.1 41/35
21 287.3 196.4 46/39
22 301 205.8 44/37
23 314.7 215.1 6/5
24 328.4 224.5
25 342.1 233.8 28/23
26 355.8 243.2 27/22, 43/35
27 369.4 252.5
28 383.1 261.9
29 396.8 271.2 44/35
30 410.5 280.6 19/15
31 424.2 289.9 23/18
32 437.9 299.3
33 451.5 308.6
34 465.2 318
35 478.9 327.3 29/22
36 492.6 336.7
37 506.3 346
38 520 355.4
39 533.6 364.7
40 547.3 374.1
41 561 383.5 47/34
42 574.7 392.8 39/28
43 588.4 402.2
44 602.1 411.5
45 615.7 420.9
46 629.4 430.2
47 643.1 439.6
48 656.8 448.9 19/13
49 670.5 458.3 28/19
50 684.2 467.6 49/33
51 697.8 477
52 711.5 486.3
53 725.2 495.7 35/23, 38/25
54 738.9 505 23/15
55 752.6 514.4 17/11
56 766.3 523.7 14/9
57 779.9 533.1
58 793.6 542.4 49/31
59 807.3 551.8 43/27
60 821 561.2 45/28
61 834.7 570.5 34/21, 47/29
62 848.4 579.9
63 862 589.2 51/31
64 875.7 598.6
65 889.4 607.9
66 903.1 617.3
67 916.8 626.6
68 930.5 636
69 944.1 645.3
70 957.8 654.7
71 971.5 664
72 985.2 673.4
73 998.9 682.7
74 1012.6 692.1
75 1026.2 701.4
76 1039.9 710.8 31/17
77 1053.6 720.1
78 1067.3 729.5
79 1081 738.8 28/15
80 1094.7 748.2
81 1108.3 757.6
82 1122 766.9 44/23
83 1135.7 776.3 27/14
84 1149.4 785.6 33/17
85 1163.1 795 45/23
86 1176.7 804.3
87 1190.4 813.7
88 1204.1 823
89 1217.8 832.4
90 1231.5 841.7
91 1245.2 851.1 39/19
92 1258.8 860.4
93 1272.5 869.8
94 1286.2 879.1
95 1299.9 888.5
96 1313.6 897.8 47/22
97 1327.3 907.2 28/13
98 1340.9 916.5
99 1354.6 925.9
100 1368.3 935.3
101 1382 944.6
102 1395.7 954 47/21
103 1409.4 963.3
104 1423 972.7
105 1436.7 982
106 1450.4 991.4
107 1464.1 1000.7
108 1477.8 1010.1 54/23
109 1491.5 1019.4 45/19
110 1505.1 1028.8
111 1518.8 1038.1
112 1532.5 1047.5
113 1546.2 1056.8 22/9
114 1559.9 1066.2
115 1573.6 1075.5
116 1587.2 1084.9 5/2
117 1600.9 1094.2
118 1614.6 1103.6
119 1628.3 1112.9
120 1642 1122.3
121 1655.7 1131.7 13/5
122 1669.3 1141
123 1683 1150.4 37/14
124 1696.7 1159.7
125 1710.4 1169.1
126 1724.1 1178.4
127 1737.8 1187.8
128 1751.4 1197.1
129 1765.1 1206.5
130 1778.8 1215.8
131 1792.5 1225.2 31/11
132 1806.2 1234.5
133 1819.9 1243.9
134 1833.5 1253.2 49/17
135 1847.2 1262.6
136 1860.9 1271.9 41/14
137 1874.6 1281.3
138 1888.3 1290.6
139 1902 1300 3/1

Harmonics

Approximation of harmonics in 139edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.12 +0.00 -5.45 +5.04 +4.12 -2.78 -1.34 +0.00 -4.52 -5.33 -5.45
Relative (%) +30.1 +0.0 -39.8 +36.9 +30.1 -20.3 -9.8 +0.0 -33.1 -39.0 -39.8
Steps
(reduced)
88
(88)
139
(0)
175
(36)
204
(65)
227
(88)
246
(107)
263
(124)
278
(0)
291
(13)
303
(25)
314
(36)
Approximation of harmonics in 139edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.49 +1.34 +5.04 +2.78 -6.40 +4.12 +6.29 -0.41 -2.78 -1.21 +3.93
Relative (%) +47.4 +9.8 +36.9 +20.3 -46.7 +30.1 +46.0 -3.0 -20.3 -8.9 +28.7
Steps
(reduced)
325
(47)
334
(56)
343
(65)
351
(73)
358
(80)
366
(88)
373
(95)
379
(101)
385
(107)
391
(113)
397
(119)