139edt
Jump to navigation
Jump to search
Prime factorization
139 (prime)
Step size
13.6831¢
Octave
88\139edt (1204.12¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 138edt | 139edt | 140edt → |
139 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 139edt or 139ed3), is a nonoctave tuning system that divides the interval of 3/1 into 139 equal parts of about 13.7 ¢ each. Each step represents a frequency ratio of 31/139, or the 139th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 13.7 | 9.4 | |
2 | 27.4 | 18.7 | |
3 | 41 | 28.1 | 42/41, 43/42, 44/43 |
4 | 54.7 | 37.4 | |
5 | 68.4 | 46.8 | 26/25, 51/49 |
6 | 82.1 | 56.1 | 22/21, 43/41 |
7 | 95.8 | 65.5 | 37/35 |
8 | 109.5 | 74.8 | 33/31 |
9 | 123.1 | 84.2 | 29/27, 44/41 |
10 | 136.8 | 93.5 | |
11 | 150.5 | 102.9 | |
12 | 164.2 | 112.2 | |
13 | 177.9 | 121.6 | 41/37 |
14 | 191.6 | 130.9 | |
15 | 205.2 | 140.3 | |
16 | 218.9 | 149.6 | 42/37 |
17 | 232.6 | 159 | |
18 | 246.3 | 168.3 | 15/13 |
19 | 260 | 177.7 | 43/37 |
20 | 273.7 | 187.1 | 41/35 |
21 | 287.3 | 196.4 | 46/39 |
22 | 301 | 205.8 | 44/37 |
23 | 314.7 | 215.1 | 6/5 |
24 | 328.4 | 224.5 | |
25 | 342.1 | 233.8 | 28/23 |
26 | 355.8 | 243.2 | 27/22, 43/35 |
27 | 369.4 | 252.5 | |
28 | 383.1 | 261.9 | |
29 | 396.8 | 271.2 | 44/35 |
30 | 410.5 | 280.6 | 19/15 |
31 | 424.2 | 289.9 | 23/18 |
32 | 437.9 | 299.3 | |
33 | 451.5 | 308.6 | |
34 | 465.2 | 318 | |
35 | 478.9 | 327.3 | 29/22 |
36 | 492.6 | 336.7 | |
37 | 506.3 | 346 | |
38 | 520 | 355.4 | |
39 | 533.6 | 364.7 | |
40 | 547.3 | 374.1 | |
41 | 561 | 383.5 | 47/34 |
42 | 574.7 | 392.8 | 39/28 |
43 | 588.4 | 402.2 | |
44 | 602.1 | 411.5 | |
45 | 615.7 | 420.9 | |
46 | 629.4 | 430.2 | |
47 | 643.1 | 439.6 | |
48 | 656.8 | 448.9 | 19/13 |
49 | 670.5 | 458.3 | 28/19 |
50 | 684.2 | 467.6 | 49/33 |
51 | 697.8 | 477 | |
52 | 711.5 | 486.3 | |
53 | 725.2 | 495.7 | 35/23, 38/25 |
54 | 738.9 | 505 | 23/15 |
55 | 752.6 | 514.4 | 17/11 |
56 | 766.3 | 523.7 | 14/9 |
57 | 779.9 | 533.1 | |
58 | 793.6 | 542.4 | 49/31 |
59 | 807.3 | 551.8 | 43/27 |
60 | 821 | 561.2 | 45/28 |
61 | 834.7 | 570.5 | 34/21, 47/29 |
62 | 848.4 | 579.9 | |
63 | 862 | 589.2 | 51/31 |
64 | 875.7 | 598.6 | |
65 | 889.4 | 607.9 | |
66 | 903.1 | 617.3 | |
67 | 916.8 | 626.6 | |
68 | 930.5 | 636 | |
69 | 944.1 | 645.3 | |
70 | 957.8 | 654.7 | |
71 | 971.5 | 664 | |
72 | 985.2 | 673.4 | |
73 | 998.9 | 682.7 | |
74 | 1012.6 | 692.1 | |
75 | 1026.2 | 701.4 | |
76 | 1039.9 | 710.8 | 31/17 |
77 | 1053.6 | 720.1 | |
78 | 1067.3 | 729.5 | |
79 | 1081 | 738.8 | 28/15 |
80 | 1094.7 | 748.2 | |
81 | 1108.3 | 757.6 | |
82 | 1122 | 766.9 | 44/23 |
83 | 1135.7 | 776.3 | 27/14 |
84 | 1149.4 | 785.6 | 33/17 |
85 | 1163.1 | 795 | 45/23 |
86 | 1176.7 | 804.3 | |
87 | 1190.4 | 813.7 | |
88 | 1204.1 | 823 | |
89 | 1217.8 | 832.4 | |
90 | 1231.5 | 841.7 | |
91 | 1245.2 | 851.1 | 39/19 |
92 | 1258.8 | 860.4 | |
93 | 1272.5 | 869.8 | |
94 | 1286.2 | 879.1 | |
95 | 1299.9 | 888.5 | |
96 | 1313.6 | 897.8 | 47/22 |
97 | 1327.3 | 907.2 | 28/13 |
98 | 1340.9 | 916.5 | |
99 | 1354.6 | 925.9 | |
100 | 1368.3 | 935.3 | |
101 | 1382 | 944.6 | |
102 | 1395.7 | 954 | 47/21 |
103 | 1409.4 | 963.3 | |
104 | 1423 | 972.7 | |
105 | 1436.7 | 982 | |
106 | 1450.4 | 991.4 | |
107 | 1464.1 | 1000.7 | |
108 | 1477.8 | 1010.1 | 54/23 |
109 | 1491.5 | 1019.4 | 45/19 |
110 | 1505.1 | 1028.8 | |
111 | 1518.8 | 1038.1 | |
112 | 1532.5 | 1047.5 | |
113 | 1546.2 | 1056.8 | 22/9 |
114 | 1559.9 | 1066.2 | |
115 | 1573.6 | 1075.5 | |
116 | 1587.2 | 1084.9 | 5/2 |
117 | 1600.9 | 1094.2 | |
118 | 1614.6 | 1103.6 | |
119 | 1628.3 | 1112.9 | |
120 | 1642 | 1122.3 | |
121 | 1655.7 | 1131.7 | 13/5 |
122 | 1669.3 | 1141 | |
123 | 1683 | 1150.4 | 37/14 |
124 | 1696.7 | 1159.7 | |
125 | 1710.4 | 1169.1 | |
126 | 1724.1 | 1178.4 | |
127 | 1737.8 | 1187.8 | |
128 | 1751.4 | 1197.1 | |
129 | 1765.1 | 1206.5 | |
130 | 1778.8 | 1215.8 | |
131 | 1792.5 | 1225.2 | 31/11 |
132 | 1806.2 | 1234.5 | |
133 | 1819.9 | 1243.9 | |
134 | 1833.5 | 1253.2 | 49/17 |
135 | 1847.2 | 1262.6 | |
136 | 1860.9 | 1271.9 | 41/14 |
137 | 1874.6 | 1281.3 | |
138 | 1888.3 | 1290.6 | |
139 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.12 | +0.00 | -5.45 | +5.04 | +4.12 | -2.78 | -1.34 | +0.00 | -4.52 | -5.33 | -5.45 |
Relative (%) | +30.1 | +0.0 | -39.8 | +36.9 | +30.1 | -20.3 | -9.8 | +0.0 | -33.1 | -39.0 | -39.8 | |
Steps (reduced) |
88 (88) |
139 (0) |
175 (36) |
204 (65) |
227 (88) |
246 (107) |
263 (124) |
278 (0) |
291 (13) |
303 (25) |
314 (36) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.49 | +1.34 | +5.04 | +2.78 | -6.40 | +4.12 | +6.29 | -0.41 | -2.78 | -1.21 | +3.93 |
Relative (%) | +47.4 | +9.8 | +36.9 | +20.3 | -46.7 | +30.1 | +46.0 | -3.0 | -20.3 | -8.9 | +28.7 | |
Steps (reduced) |
325 (47) |
334 (56) |
343 (65) |
351 (73) |
358 (80) |
366 (88) |
373 (95) |
379 (101) |
385 (107) |
391 (113) |
397 (119) |