138edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 23
Step size
13.7823¢
Octave
87\138edt (1199.06¢) (→29\46edt)
Consistency limit
16
Distinct consistency limit
13
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 137edt | 138edt | 139edt → |
138 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 138edt or 138ed3), is a nonoctave tuning system that divides the interval of 3/1 into 138 equal parts of about 13.8 ¢ each. Each step represents a frequency ratio of 31/138, or the 138th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 13.782 | |
2 | 27.565 | |
3 | 41.347 | 41/40, 42/41, 43/42, 44/43 |
4 | 55.129 | 31/30, 32/31 |
5 | 68.911 | 26/25 |
6 | 82.694 | 43/41 |
7 | 96.476 | |
8 | 110.258 | 16/15 |
9 | 124.041 | 29/27, 43/40 |
10 | 137.823 | 13/12 |
11 | 151.605 | 12/11 |
12 | 165.387 | 11/10 |
13 | 179.17 | 51/46 |
14 | 192.952 | 19/17 |
15 | 206.734 | |
16 | 220.517 | 25/22 |
17 | 234.299 | |
18 | 248.081 | 15/13 |
19 | 261.863 | 50/43 |
20 | 275.646 | 34/29 |
21 | 289.428 | 13/11 |
22 | 303.21 | 25/21, 31/26 |
23 | 316.993 | 6/5 |
24 | 330.775 | 23/19 |
25 | 344.557 | 50/41 |
26 | 358.339 | 16/13 |
27 | 372.122 | 31/25 |
28 | 385.904 | 5/4 |
29 | 399.686 | 29/23, 34/27 |
30 | 413.468 | 33/26, 47/37 |
31 | 427.251 | 32/25 |
32 | 441.033 | 40/31 |
33 | 454.815 | 13/10 |
34 | 468.598 | 38/29 |
35 | 482.38 | 41/31 |
36 | 496.162 | |
37 | 509.944 | 43/32, 51/38 |
38 | 523.727 | 23/17 |
39 | 537.509 | 15/11 |
40 | 551.291 | 11/8 |
41 | 565.074 | 18/13, 43/31 |
42 | 578.856 | |
43 | 592.638 | 31/22, 38/27 |
44 | 606.42 | 44/31 |
45 | 620.203 | |
46 | 633.985 | |
47 | 647.767 | 16/11 |
48 | 661.55 | 22/15, 41/28 |
49 | 675.332 | 31/21, 34/23 |
50 | 689.114 | |
51 | 702.896 | 3/2 |
52 | 716.679 | |
53 | 730.461 | 29/19, 32/21 |
54 | 744.243 | 20/13, 43/28 |
55 | 758.026 | 31/20, 48/31 |
56 | 771.808 | 25/16 |
57 | 785.59 | 52/33 |
58 | 799.372 | 27/17, 46/29 |
59 | 813.155 | 8/5 |
60 | 826.937 | 29/18, 50/31 |
61 | 840.719 | 13/8 |
62 | 854.502 | |
63 | 868.284 | 33/20, 38/23 |
64 | 882.066 | |
65 | 895.848 | 52/31 |
66 | 909.631 | 22/13 |
67 | 923.413 | 29/17, 46/27 |
68 | 937.195 | 43/25 |
69 | 950.978 | 26/15, 45/26 |
70 | 964.76 | |
71 | 978.542 | 44/25, 51/29 |
72 | 992.324 | 39/22 |
73 | 1006.107 | 34/19 |
74 | 1019.889 | |
75 | 1033.671 | 20/11 |
76 | 1047.453 | |
77 | 1061.236 | 24/13 |
78 | 1075.018 | 54/29 |
79 | 1088.8 | 15/8 |
80 | 1102.583 | 17/9 |
81 | 1116.365 | 40/21 |
82 | 1130.147 | 48/25 |
83 | 1143.929 | 31/16 |
84 | 1157.712 | 39/20, 41/21 |
85 | 1171.494 | |
86 | 1185.276 | |
87 | 1199.059 | 2/1 |
88 | 1212.841 | |
89 | 1226.623 | |
90 | 1240.405 | 43/21, 45/22 |
91 | 1254.188 | 33/16 |
92 | 1267.97 | 52/25 |
93 | 1281.752 | 44/21 |
94 | 1295.535 | |
95 | 1309.317 | |
96 | 1323.099 | |
97 | 1336.881 | 13/6 |
98 | 1350.664 | 24/11 |
99 | 1364.446 | 11/5 |
100 | 1378.228 | 51/23 |
101 | 1392.011 | 38/17 |
102 | 1405.793 | |
103 | 1419.575 | |
104 | 1433.357 | |
105 | 1447.14 | 30/13 |
106 | 1460.922 | |
107 | 1474.704 | |
108 | 1488.487 | 26/11 |
109 | 1502.269 | 50/21 |
110 | 1516.051 | 12/5 |
111 | 1529.833 | 46/19 |
112 | 1543.616 | 39/16 |
113 | 1557.398 | |
114 | 1571.18 | 52/21 |
115 | 1584.963 | 5/2 |
116 | 1598.745 | |
117 | 1612.527 | 33/13 |
118 | 1626.309 | |
119 | 1640.092 | |
120 | 1653.874 | 13/5 |
121 | 1667.656 | |
122 | 1681.438 | |
123 | 1695.221 | |
124 | 1709.003 | 51/19 |
125 | 1722.785 | 46/17 |
126 | 1736.568 | 30/11 |
127 | 1750.35 | 11/4 |
128 | 1764.132 | 36/13 |
129 | 1777.914 | |
130 | 1791.697 | 45/16 |
131 | 1805.479 | |
132 | 1819.261 | |
133 | 1833.044 | |
134 | 1846.826 | |
135 | 1860.608 | 41/14 |
136 | 1874.39 | |
137 | 1888.173 | |
138 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | -2.29 | -0.94 | -5.95 | -2.82 | +0.00 | -3.23 | -2.85 | -1.88 |
Relative (%) | -6.8 | +0.0 | -13.7 | -16.6 | -6.8 | -43.2 | -20.5 | +0.0 | -23.5 | -20.7 | -13.7 | |
Steps (reduced) |
87 (87) |
138 (0) |
174 (36) |
202 (64) |
225 (87) |
244 (106) |
261 (123) |
276 (0) |
289 (13) |
301 (25) |
312 (36) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -6.89 | -2.29 | -3.77 | +1.54 | -0.94 | +1.93 | -4.18 | -5.95 | -3.79 | +1.95 |
Relative (%) | -19.1 | -50.0 | -16.6 | -27.3 | +11.2 | -6.8 | +14.0 | -30.3 | -43.2 | -27.5 | +14.1 | |
Steps (reduced) |
322 (46) |
331 (55) |
340 (64) |
348 (72) |
356 (80) |
363 (87) |
370 (94) |
376 (100) |
382 (106) |
388 (112) |
394 (118) |