138edt
Jump to navigation
Jump to search
Prime factorization
2 × 3 × 23
Step size
13.7823¢
Octave
87\138edt (1199.06¢) (→29\46edt)
Consistency limit
16
Distinct consistency limit
13
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 137edt | 138edt | 139edt → |
138 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 138edt or 138ed3), is a nonoctave tuning system that divides the interval of 3/1 into 138 equal parts of about 13.8 ¢ each. Each step represents a frequency ratio of 31/138, or the 138th root of 3.
Theory
138edt is related to 87edo, but with the perfect twelfth instead of the octave tuned just. Like 87edo, it is consistent to the 16-integer-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.94 | +0.00 | -1.88 | -2.29 | -0.94 | -5.95 | -2.82 | +0.00 | -3.23 | -2.85 | -1.88 |
Relative (%) | -6.8 | +0.0 | -13.7 | -16.6 | -6.8 | -43.2 | -20.5 | +0.0 | -23.5 | -20.7 | -13.7 | |
Steps (reduced) |
87 (87) |
138 (0) |
174 (36) |
202 (64) |
225 (87) |
244 (106) |
261 (123) |
276 (0) |
289 (13) |
301 (25) |
312 (36) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -6.89 | -2.29 | -3.77 | +1.54 | -0.94 | +1.93 | -4.18 | -5.95 | -3.79 | +1.95 | -2.82 |
Relative (%) | -19.1 | -50.0 | -16.6 | -27.3 | +11.2 | -6.8 | +14.0 | -30.3 | -43.2 | -27.5 | +14.1 | -20.5 | |
Steps (reduced) |
322 (46) |
331 (55) |
340 (64) |
348 (72) |
356 (80) |
363 (87) |
370 (94) |
376 (100) |
382 (106) |
388 (112) |
394 (118) |
399 (123) |
Subsets and supersets
Since 138 factors into primes as 2 × 69, 138edt contains 2edt and 69edt as subset edts.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 13.8 | 9.4 | |
2 | 27.6 | 18.8 | |
3 | 41.3 | 28.3 | 41/40, 42/41, 43/42, 44/43 |
4 | 55.1 | 37.7 | 31/30, 32/31 |
5 | 68.9 | 47.1 | 26/25 |
6 | 82.7 | 56.5 | 43/41 |
7 | 96.5 | 65.9 | |
8 | 110.3 | 75.4 | 16/15 |
9 | 124 | 84.8 | 29/27, 43/40 |
10 | 137.8 | 94.2 | 13/12 |
11 | 151.6 | 103.6 | 12/11 |
12 | 165.4 | 113 | 11/10 |
13 | 179.2 | 122.5 | 51/46 |
14 | 193 | 131.9 | 19/17 |
15 | 206.7 | 141.3 | |
16 | 220.5 | 150.7 | 25/22 |
17 | 234.3 | 160.1 | |
18 | 248.1 | 169.6 | 15/13 |
19 | 261.9 | 179 | 50/43 |
20 | 275.6 | 188.4 | 34/29 |
21 | 289.4 | 197.8 | 13/11 |
22 | 303.2 | 207.2 | 25/21, 31/26 |
23 | 317 | 216.7 | 6/5 |
24 | 330.8 | 226.1 | 23/19 |
25 | 344.6 | 235.5 | 50/41 |
26 | 358.3 | 244.9 | 16/13 |
27 | 372.1 | 254.3 | 31/25 |
28 | 385.9 | 263.8 | 5/4 |
29 | 399.7 | 273.2 | 29/23, 34/27 |
30 | 413.5 | 282.6 | 33/26, 47/37 |
31 | 427.3 | 292 | 32/25 |
32 | 441 | 301.4 | 40/31 |
33 | 454.8 | 310.9 | 13/10 |
34 | 468.6 | 320.3 | 38/29 |
35 | 482.4 | 329.7 | 41/31 |
36 | 496.2 | 339.1 | |
37 | 509.9 | 348.6 | 43/32, 51/38 |
38 | 523.7 | 358 | 23/17 |
39 | 537.5 | 367.4 | 15/11 |
40 | 551.3 | 376.8 | 11/8 |
41 | 565.1 | 386.2 | 18/13, 43/31 |
42 | 578.9 | 395.7 | |
43 | 592.6 | 405.1 | 31/22, 38/27 |
44 | 606.4 | 414.5 | 44/31 |
45 | 620.2 | 423.9 | |
46 | 634 | 433.3 | |
47 | 647.8 | 442.8 | 16/11 |
48 | 661.5 | 452.2 | 22/15, 41/28 |
49 | 675.3 | 461.6 | 31/21, 34/23 |
50 | 689.1 | 471 | |
51 | 702.9 | 480.4 | 3/2 |
52 | 716.7 | 489.9 | |
53 | 730.5 | 499.3 | 29/19, 32/21 |
54 | 744.2 | 508.7 | 20/13, 43/28 |
55 | 758 | 518.1 | 31/20, 48/31 |
56 | 771.8 | 527.5 | 25/16 |
57 | 785.6 | 537 | 52/33 |
58 | 799.4 | 546.4 | 27/17, 46/29 |
59 | 813.2 | 555.8 | 8/5 |
60 | 826.9 | 565.2 | 29/18, 50/31 |
61 | 840.7 | 574.6 | 13/8 |
62 | 854.5 | 584.1 | |
63 | 868.3 | 593.5 | 33/20, 38/23 |
64 | 882.1 | 602.9 | |
65 | 895.8 | 612.3 | 52/31 |
66 | 909.6 | 621.7 | 22/13 |
67 | 923.4 | 631.2 | 29/17, 46/27 |
68 | 937.2 | 640.6 | 43/25 |
69 | 951 | 650 | 26/15, 45/26 |
70 | 964.8 | 659.4 | |
71 | 978.5 | 668.8 | 44/25, 51/29 |
72 | 992.3 | 678.3 | 39/22 |
73 | 1006.1 | 687.7 | 34/19 |
74 | 1019.9 | 697.1 | |
75 | 1033.7 | 706.5 | 20/11 |
76 | 1047.5 | 715.9 | |
77 | 1061.2 | 725.4 | 24/13 |
78 | 1075 | 734.8 | 54/29 |
79 | 1088.8 | 744.2 | 15/8 |
80 | 1102.6 | 753.6 | 17/9 |
81 | 1116.4 | 763 | 40/21 |
82 | 1130.1 | 772.5 | 48/25 |
83 | 1143.9 | 781.9 | 31/16 |
84 | 1157.7 | 791.3 | 39/20, 41/21 |
85 | 1171.5 | 800.7 | |
86 | 1185.3 | 810.1 | |
87 | 1199.1 | 819.6 | 2/1 |
88 | 1212.8 | 829 | |
89 | 1226.6 | 838.4 | |
90 | 1240.4 | 847.8 | 43/21, 45/22 |
91 | 1254.2 | 857.2 | 33/16 |
92 | 1268 | 866.7 | 52/25 |
93 | 1281.8 | 876.1 | 44/21 |
94 | 1295.5 | 885.5 | |
95 | 1309.3 | 894.9 | |
96 | 1323.1 | 904.3 | |
97 | 1336.9 | 913.8 | 13/6 |
98 | 1350.7 | 923.2 | 24/11 |
99 | 1364.4 | 932.6 | 11/5 |
100 | 1378.2 | 942 | 51/23 |
101 | 1392 | 951.4 | 38/17 |
102 | 1405.8 | 960.9 | |
103 | 1419.6 | 970.3 | |
104 | 1433.4 | 979.7 | |
105 | 1447.1 | 989.1 | 30/13 |
106 | 1460.9 | 998.6 | |
107 | 1474.7 | 1008 | |
108 | 1488.5 | 1017.4 | 26/11 |
109 | 1502.3 | 1026.8 | 50/21 |
110 | 1516.1 | 1036.2 | 12/5 |
111 | 1529.8 | 1045.7 | 46/19 |
112 | 1543.6 | 1055.1 | 39/16 |
113 | 1557.4 | 1064.5 | |
114 | 1571.2 | 1073.9 | 52/21 |
115 | 1585 | 1083.3 | 5/2 |
116 | 1598.7 | 1092.8 | |
117 | 1612.5 | 1102.2 | 33/13 |
118 | 1626.3 | 1111.6 | |
119 | 1640.1 | 1121 | |
120 | 1653.9 | 1130.4 | 13/5 |
121 | 1667.7 | 1139.9 | |
122 | 1681.4 | 1149.3 | |
123 | 1695.2 | 1158.7 | |
124 | 1709 | 1168.1 | 51/19 |
125 | 1722.8 | 1177.5 | 46/17 |
126 | 1736.6 | 1187 | 30/11 |
127 | 1750.3 | 1196.4 | 11/4 |
128 | 1764.1 | 1205.8 | 36/13 |
129 | 1777.9 | 1215.2 | |
130 | 1791.7 | 1224.6 | 45/16 |
131 | 1805.5 | 1234.1 | |
132 | 1819.3 | 1243.5 | |
133 | 1833 | 1252.9 | |
134 | 1846.8 | 1262.3 | |
135 | 1860.6 | 1271.7 | 41/14 |
136 | 1874.4 | 1281.2 | |
137 | 1888.2 | 1290.6 | |
138 | 1902 | 1300 | 3/1 |