138edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 137edt 138edt 139edt →
Prime factorization 2 × 3 × 23
Step size 13.7823¢ 
Octave 87\138edt (1199.06¢) (→29\46edt)
Consistency limit 16
Distinct consistency limit 13

138 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 138edt or 138ed3), is a nonoctave tuning system that divides the interval of 3/1 into 138 equal parts of about 13.8⁠ ⁠¢ each. Each step represents a frequency ratio of 31/138, or the 138th root of 3.

Theory

138edt is related to 87edo, but with the perfect twelfth instead of the octave tuned just. Like 87edo, it is consistent to the 16-integer-limit.

Harmonics

Approximation of harmonics in 138edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.94 +0.00 -1.88 -2.29 -0.94 -5.95 -2.82 +0.00 -3.23 -2.85 -1.88
Relative (%) -6.8 +0.0 -13.7 -16.6 -6.8 -43.2 -20.5 +0.0 -23.5 -20.7 -13.7
Steps
(reduced)
87
(87)
138
(0)
174
(36)
202
(64)
225
(87)
244
(106)
261
(123)
276
(0)
289
(13)
301
(25)
312
(36)
Approximation of harmonics in 138edt (continued)
Harmonic 13 14 15 16 17 18 19 20 21 22 23 24
Error Absolute (¢) -2.63 -6.89 -2.29 -3.77 +1.54 -0.94 +1.93 -4.18 -5.95 -3.79 +1.95 -2.82
Relative (%) -19.1 -50.0 -16.6 -27.3 +11.2 -6.8 +14.0 -30.3 -43.2 -27.5 +14.1 -20.5
Steps
(reduced)
322
(46)
331
(55)
340
(64)
348
(72)
356
(80)
363
(87)
370
(94)
376
(100)
382
(106)
388
(112)
394
(118)
399
(123)

Subsets and supersets

Since 138 factors into primes as 2 × 69, 138edt contains 2edt and 69edt as subset edts.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.8 9.4
2 27.6 18.8
3 41.3 28.3 41/40, 42/41, 43/42, 44/43
4 55.1 37.7 31/30, 32/31
5 68.9 47.1 26/25
6 82.7 56.5 43/41
7 96.5 65.9
8 110.3 75.4 16/15
9 124 84.8 29/27, 43/40
10 137.8 94.2 13/12
11 151.6 103.6 12/11
12 165.4 113 11/10
13 179.2 122.5 51/46
14 193 131.9 19/17
15 206.7 141.3
16 220.5 150.7 25/22
17 234.3 160.1
18 248.1 169.6 15/13
19 261.9 179 50/43
20 275.6 188.4 34/29
21 289.4 197.8 13/11
22 303.2 207.2 25/21, 31/26
23 317 216.7 6/5
24 330.8 226.1 23/19
25 344.6 235.5 50/41
26 358.3 244.9 16/13
27 372.1 254.3 31/25
28 385.9 263.8 5/4
29 399.7 273.2 29/23, 34/27
30 413.5 282.6 33/26, 47/37
31 427.3 292 32/25
32 441 301.4 40/31
33 454.8 310.9 13/10
34 468.6 320.3 38/29
35 482.4 329.7 41/31
36 496.2 339.1
37 509.9 348.6 43/32, 51/38
38 523.7 358 23/17
39 537.5 367.4 15/11
40 551.3 376.8 11/8
41 565.1 386.2 18/13, 43/31
42 578.9 395.7
43 592.6 405.1 31/22, 38/27
44 606.4 414.5 44/31
45 620.2 423.9
46 634 433.3
47 647.8 442.8 16/11
48 661.5 452.2 22/15, 41/28
49 675.3 461.6 31/21, 34/23
50 689.1 471
51 702.9 480.4 3/2
52 716.7 489.9
53 730.5 499.3 29/19, 32/21
54 744.2 508.7 20/13, 43/28
55 758 518.1 31/20, 48/31
56 771.8 527.5 25/16
57 785.6 537 52/33
58 799.4 546.4 27/17, 46/29
59 813.2 555.8 8/5
60 826.9 565.2 29/18, 50/31
61 840.7 574.6 13/8
62 854.5 584.1
63 868.3 593.5 33/20, 38/23
64 882.1 602.9
65 895.8 612.3 52/31
66 909.6 621.7 22/13
67 923.4 631.2 29/17, 46/27
68 937.2 640.6 43/25
69 951 650 26/15, 45/26
70 964.8 659.4
71 978.5 668.8 44/25, 51/29
72 992.3 678.3 39/22
73 1006.1 687.7 34/19
74 1019.9 697.1
75 1033.7 706.5 20/11
76 1047.5 715.9
77 1061.2 725.4 24/13
78 1075 734.8 54/29
79 1088.8 744.2 15/8
80 1102.6 753.6 17/9
81 1116.4 763 40/21
82 1130.1 772.5 48/25
83 1143.9 781.9 31/16
84 1157.7 791.3 39/20, 41/21
85 1171.5 800.7
86 1185.3 810.1
87 1199.1 819.6 2/1
88 1212.8 829
89 1226.6 838.4
90 1240.4 847.8 43/21, 45/22
91 1254.2 857.2 33/16
92 1268 866.7 52/25
93 1281.8 876.1 44/21
94 1295.5 885.5
95 1309.3 894.9
96 1323.1 904.3
97 1336.9 913.8 13/6
98 1350.7 923.2 24/11
99 1364.4 932.6 11/5
100 1378.2 942 51/23
101 1392 951.4 38/17
102 1405.8 960.9
103 1419.6 970.3
104 1433.4 979.7
105 1447.1 989.1 30/13
106 1460.9 998.6
107 1474.7 1008
108 1488.5 1017.4 26/11
109 1502.3 1026.8 50/21
110 1516.1 1036.2 12/5
111 1529.8 1045.7 46/19
112 1543.6 1055.1 39/16
113 1557.4 1064.5
114 1571.2 1073.9 52/21
115 1585 1083.3 5/2
116 1598.7 1092.8
117 1612.5 1102.2 33/13
118 1626.3 1111.6
119 1640.1 1121
120 1653.9 1130.4 13/5
121 1667.7 1139.9
122 1681.4 1149.3
123 1695.2 1158.7
124 1709 1168.1 51/19
125 1722.8 1177.5 46/17
126 1736.6 1187 30/11
127 1750.3 1196.4 11/4
128 1764.1 1205.8 36/13
129 1777.9 1215.2
130 1791.7 1224.6 45/16
131 1805.5 1234.1
132 1819.3 1243.5
133 1833 1252.9
134 1846.8 1262.3
135 1860.6 1271.7 41/14
136 1874.4 1281.2
137 1888.2 1290.6
138 1902 1300 3/1