138edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 137edt138edt139edt →
Prime factorization 2 × 3 × 23
Step size 13.7823¢ 
Octave 87\138edt (1199.06¢) (→29\46edt)
Consistency limit 16
Distinct consistency limit 13

138 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 138edt or 138ed3), is a nonoctave tuning system that divides the interval of 3/1 into 138 equal parts of about 13.8 ¢ each. Each step represents a frequency ratio of 31/138, or the 138th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.782
2 27.565
3 41.347 41/40, 42/41, 43/42, 44/43
4 55.129 31/30, 32/31
5 68.911 26/25
6 82.694 43/41
7 96.476
8 110.258 16/15
9 124.041 29/27, 43/40
10 137.823 13/12
11 151.605 12/11
12 165.387 11/10
13 179.17 51/46
14 192.952 19/17
15 206.734
16 220.517 25/22
17 234.299
18 248.081 15/13
19 261.863 50/43
20 275.646 34/29
21 289.428 13/11
22 303.21 25/21, 31/26
23 316.993 6/5
24 330.775 23/19
25 344.557 50/41
26 358.339 16/13
27 372.122 31/25
28 385.904 5/4
29 399.686 29/23, 34/27
30 413.468 33/26, 47/37
31 427.251 32/25
32 441.033 40/31
33 454.815 13/10
34 468.598 38/29
35 482.38 41/31
36 496.162
37 509.944 43/32, 51/38
38 523.727 23/17
39 537.509 15/11
40 551.291 11/8
41 565.074 18/13, 43/31
42 578.856
43 592.638 31/22, 38/27
44 606.42 44/31
45 620.203
46 633.985
47 647.767 16/11
48 661.55 22/15, 41/28
49 675.332 31/21, 34/23
50 689.114
51 702.896 3/2
52 716.679
53 730.461 29/19, 32/21
54 744.243 20/13, 43/28
55 758.026 31/20, 48/31
56 771.808 25/16
57 785.59 52/33
58 799.372 27/17, 46/29
59 813.155 8/5
60 826.937 29/18, 50/31
61 840.719 13/8
62 854.502
63 868.284 33/20, 38/23
64 882.066
65 895.848 52/31
66 909.631 22/13
67 923.413 29/17, 46/27
68 937.195 43/25
69 950.978 26/15, 45/26
70 964.76
71 978.542 44/25, 51/29
72 992.324 39/22
73 1006.107 34/19
74 1019.889
75 1033.671 20/11
76 1047.453
77 1061.236 24/13
78 1075.018 54/29
79 1088.8 15/8
80 1102.583 17/9
81 1116.365 40/21
82 1130.147 48/25
83 1143.929 31/16
84 1157.712 39/20, 41/21
85 1171.494
86 1185.276
87 1199.059 2/1
88 1212.841
89 1226.623
90 1240.405 43/21, 45/22
91 1254.188 33/16
92 1267.97 52/25
93 1281.752 44/21
94 1295.535
95 1309.317
96 1323.099
97 1336.881 13/6
98 1350.664 24/11
99 1364.446 11/5
100 1378.228 51/23
101 1392.011 38/17
102 1405.793
103 1419.575
104 1433.357
105 1447.14 30/13
106 1460.922
107 1474.704
108 1488.487 26/11
109 1502.269 50/21
110 1516.051 12/5
111 1529.833 46/19
112 1543.616 39/16
113 1557.398
114 1571.18 52/21
115 1584.963 5/2
116 1598.745
117 1612.527 33/13
118 1626.309
119 1640.092
120 1653.874 13/5
121 1667.656
122 1681.438
123 1695.221
124 1709.003 51/19
125 1722.785 46/17
126 1736.568 30/11
127 1750.35 11/4
128 1764.132 36/13
129 1777.914
130 1791.697 45/16
131 1805.479
132 1819.261
133 1833.044
134 1846.826
135 1860.608 41/14
136 1874.39
137 1888.173
138 1901.955 3/1

Harmonics

Approximation of harmonics in 138edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.94 +0.00 -1.88 -2.29 -0.94 -5.95 -2.82 +0.00 -3.23 -2.85 -1.88
Relative (%) -6.8 +0.0 -13.7 -16.6 -6.8 -43.2 -20.5 +0.0 -23.5 -20.7 -13.7
Steps
(reduced)
87
(87)
138
(0)
174
(36)
202
(64)
225
(87)
244
(106)
261
(123)
276
(0)
289
(13)
301
(25)
312
(36)
Approximation of harmonics in 138edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -6.89 -2.29 -3.77 +1.54 -0.94 +1.93 -4.18 -5.95 -3.79 +1.95
Relative (%) -19.1 -50.0 -16.6 -27.3 +11.2 -6.8 +14.0 -30.3 -43.2 -27.5 +14.1
Steps
(reduced)
322
(46)
331
(55)
340
(64)
348
(72)
356
(80)
363
(87)
370
(94)
376
(100)
382
(106)
388
(112)
394
(118)