137edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 136edt137edt138edt →
Prime factorization 137 (prime)
Step size 13.8829¢ 
Octave 86\137edt (1193.93¢)
Consistency limit 2
Distinct consistency limit 2

137 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 137edt or 137ed3), is a nonoctave tuning system that divides the interval of 3/1 into 137 equal parts of about 13.9 ¢ each. Each step represents a frequency ratio of 31/137, or the 137th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.883
2 27.766
3 41.649 42/41, 43/42
4 55.532 31/30
5 69.414
6 83.297 43/41
7 97.18
8 111.063
9 124.946 29/27
10 138.829
11 152.712 47/43
12 166.595 11/10
13 180.477
14 194.36 47/42
15 208.243
16 222.126 33/29
17 236.009 47/41
18 249.892
19 263.775
20 277.658 27/23
21 291.541
22 305.423 31/26, 37/31
23 319.306
24 333.189
25 347.072 11/9
26 360.955
27 374.838 41/33
28 388.721
29 402.604 29/23
30 416.486 14/11
31 430.369 50/39
32 444.252
33 458.135 43/33
34 472.018
35 485.901
36 499.784
37 513.667 39/29
38 527.55 19/14
39 541.432 26/19, 41/30
40 555.315 51/37
41 569.198
42 583.081 7/5
43 596.964
44 610.847 37/26, 47/33
45 624.73 33/23, 43/30
46 638.613
47 652.496
48 666.378
49 680.261 43/29
50 694.144
51 708.027
52 721.91 41/27, 47/31
53 735.793 26/17
54 749.676
55 763.559 14/9
56 777.441 47/30
57 791.324 30/19
58 805.207 43/27
59 819.09
60 832.973
61 846.856 31/19
62 860.739 23/14, 51/31
63 874.622
64 888.505
65 902.387
66 916.27
67 930.153
68 944.036 50/29
69 957.919
70 971.802
71 985.685
72 999.568 41/23
73 1013.45
74 1027.333
75 1041.216 31/17, 42/23
76 1055.099
77 1068.982
78 1082.865 43/23
79 1096.748
80 1110.631 19/10
81 1124.514
82 1138.396 27/14
83 1152.279 37/19
84 1166.162 49/25, 51/26
85 1180.045
86 1193.928
87 1207.811
88 1221.694
89 1235.577 47/23
90 1249.459
91 1263.342
92 1277.225 23/11
93 1291.108
94 1304.991
95 1318.874 15/7
96 1332.757 41/19
97 1346.64 37/17
98 1360.523
99 1374.405 42/19
100 1388.288 29/13
101 1402.171
102 1416.054
103 1429.937
104 1443.82
105 1457.703
106 1471.586
107 1485.469 33/14
108 1499.351
109 1513.234
110 1527.117
111 1541
112 1554.883 27/11
113 1568.766 47/19
114 1582.649
115 1596.532
116 1610.414
117 1624.297 23/9
118 1638.18
119 1652.063
120 1665.946
121 1679.829 29/11
122 1693.712
123 1707.595
124 1721.478
125 1735.36 30/11
126 1749.243
127 1763.126
128 1777.009
129 1790.892
130 1804.775
131 1818.658
132 1832.541
133 1846.423
134 1860.306 41/14
135 1874.189
136 1888.072
137 1901.955 3/1

Harmonics

Approximation of harmonics in 137edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.07 +0.00 +1.74 +4.15 -6.07 +4.71 -4.33 +0.00 -1.93 -0.34 +1.74
Relative (%) -43.7 +0.0 +12.5 +29.9 -43.7 +34.0 -31.2 +0.0 -13.9 -2.4 +12.5
Steps
(reduced)
86
(86)
137
(0)
173
(36)
201
(64)
223
(86)
243
(106)
259
(122)
274
(0)
287
(13)
299
(25)
310
(36)
Approximation of harmonics in 137edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.99 -1.36 +4.15 +3.48 -4.30 -6.07 -2.49 +5.88 +4.71 -6.41 -0.07
Relative (%) +14.4 -9.8 +29.9 +25.0 -31.0 -43.7 -18.0 +42.4 +34.0 -46.2 -0.5
Steps
(reduced)
320
(46)
329
(55)
338
(64)
346
(72)
353
(79)
360
(86)
367
(93)
374
(100)
380
(106)
385
(111)
391
(117)