137edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 136edt 137edt 138edt →
Prime factorization 137 (prime)
Step size 13.8829¢ 
Octave 86\137edt (1193.93¢)
Consistency limit 2
Distinct consistency limit 2

137 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 137edt or 137ed3), is a nonoctave tuning system that divides the interval of 3/1 into 137 equal parts of about 13.9⁠ ⁠¢ each. Each step represents a frequency ratio of 31/137, or the 137th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 13.9 9.5
2 27.8 19
3 41.6 28.5 42/41, 43/42
4 55.5 38 31/30
5 69.4 47.4
6 83.3 56.9 43/41
7 97.2 66.4
8 111.1 75.9
9 124.9 85.4 29/27
10 138.8 94.9
11 152.7 104.4 47/43
12 166.6 113.9 11/10
13 180.5 123.4
14 194.4 132.8 47/42
15 208.2 142.3
16 222.1 151.8 33/29
17 236 161.3 47/41
18 249.9 170.8
19 263.8 180.3
20 277.7 189.8 27/23
21 291.5 199.3
22 305.4 208.8 31/26, 37/31
23 319.3 218.2
24 333.2 227.7
25 347.1 237.2 11/9
26 361 246.7
27 374.8 256.2 41/33
28 388.7 265.7
29 402.6 275.2 29/23
30 416.5 284.7 14/11
31 430.4 294.2 50/39
32 444.3 303.6
33 458.1 313.1 43/33
34 472 322.6
35 485.9 332.1
36 499.8 341.6
37 513.7 351.1 39/29
38 527.5 360.6 19/14
39 541.4 370.1 26/19, 41/30
40 555.3 379.6 51/37
41 569.2 389.1
42 583.1 398.5 7/5
43 597 408
44 610.8 417.5 37/26, 47/33
45 624.7 427 33/23, 43/30
46 638.6 436.5
47 652.5 446
48 666.4 455.5
49 680.3 465 43/29
50 694.1 474.5
51 708 483.9
52 721.9 493.4 41/27, 47/31
53 735.8 502.9 26/17
54 749.7 512.4
55 763.6 521.9 14/9
56 777.4 531.4 47/30
57 791.3 540.9 30/19
58 805.2 550.4 43/27
59 819.1 559.9
60 833 569.3
61 846.9 578.8 31/19
62 860.7 588.3 23/14, 51/31
63 874.6 597.8
64 888.5 607.3
65 902.4 616.8
66 916.3 626.3
67 930.2 635.8
68 944 645.3 50/29
69 957.9 654.7
70 971.8 664.2
71 985.7 673.7
72 999.6 683.2 41/23
73 1013.5 692.7
74 1027.3 702.2
75 1041.2 711.7 31/17, 42/23
76 1055.1 721.2
77 1069 730.7
78 1082.9 740.1 43/23
79 1096.7 749.6
80 1110.6 759.1 19/10
81 1124.5 768.6
82 1138.4 778.1 27/14
83 1152.3 787.6 37/19
84 1166.2 797.1 49/25, 51/26
85 1180 806.6
86 1193.9 816.1
87 1207.8 825.5
88 1221.7 835
89 1235.6 844.5 47/23
90 1249.5 854
91 1263.3 863.5
92 1277.2 873 23/11
93 1291.1 882.5
94 1305 892
95 1318.9 901.5 15/7
96 1332.8 910.9 41/19
97 1346.6 920.4 37/17
98 1360.5 929.9
99 1374.4 939.4 42/19
100 1388.3 948.9 29/13
101 1402.2 958.4
102 1416.1 967.9
103 1429.9 977.4
104 1443.8 986.9
105 1457.7 996.4
106 1471.6 1005.8
107 1485.5 1015.3 33/14
108 1499.4 1024.8
109 1513.2 1034.3
110 1527.1 1043.8
111 1541 1053.3
112 1554.9 1062.8 27/11
113 1568.8 1072.3 47/19
114 1582.6 1081.8
115 1596.5 1091.2
116 1610.4 1100.7
117 1624.3 1110.2 23/9
118 1638.2 1119.7
119 1652.1 1129.2
120 1665.9 1138.7
121 1679.8 1148.2 29/11
122 1693.7 1157.7
123 1707.6 1167.2
124 1721.5 1176.6
125 1735.4 1186.1 30/11
126 1749.2 1195.6
127 1763.1 1205.1
128 1777 1214.6
129 1790.9 1224.1
130 1804.8 1233.6
131 1818.7 1243.1
132 1832.5 1252.6
133 1846.4 1262
134 1860.3 1271.5 41/14
135 1874.2 1281
136 1888.1 1290.5
137 1902 1300 3/1

Harmonics

Approximation of harmonics in 137edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -6.07 +0.00 +1.74 +4.15 -6.07 +4.71 -4.33 +0.00 -1.93 -0.34 +1.74
Relative (%) -43.7 +0.0 +12.5 +29.9 -43.7 +34.0 -31.2 +0.0 -13.9 -2.4 +12.5
Steps
(reduced)
86
(86)
137
(0)
173
(36)
201
(64)
223
(86)
243
(106)
259
(122)
274
(0)
287
(13)
299
(25)
310
(36)
Approximation of harmonics in 137edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.99 -1.36 +4.15 +3.48 -4.30 -6.07 -2.49 +5.88 +4.71 -6.41 -0.07
Relative (%) +14.4 -9.8 +29.9 +25.0 -31.0 -43.7 -18.0 +42.4 +34.0 -46.2 -0.5
Steps
(reduced)
320
(46)
329
(55)
338
(64)
346
(72)
353
(79)
360
(86)
367
(93)
374
(100)
380
(106)
385
(111)
391
(117)