137edt
Jump to navigation
Jump to search
Prime factorization
137 (prime)
Step size
13.8829¢
Octave
86\137edt (1193.93¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 136edt | 137edt | 138edt → |
137 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 137edt or 137ed3), is a nonoctave tuning system that divides the interval of 3/1 into 137 equal parts of about 13.9 ¢ each. Each step represents a frequency ratio of 31/137, or the 137th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 13.9 | |
2 | 27.8 | |
3 | 41.6 | 42/41, 43/42 |
4 | 55.5 | 31/30 |
5 | 69.4 | |
6 | 83.3 | 43/41 |
7 | 97.2 | |
8 | 111.1 | |
9 | 124.9 | 29/27 |
10 | 138.8 | |
11 | 152.7 | 47/43 |
12 | 166.6 | 11/10 |
13 | 180.5 | |
14 | 194.4 | 47/42 |
15 | 208.2 | |
16 | 222.1 | 33/29 |
17 | 236 | 47/41 |
18 | 249.9 | |
19 | 263.8 | |
20 | 277.7 | 27/23 |
21 | 291.5 | |
22 | 305.4 | 31/26, 37/31 |
23 | 319.3 | |
24 | 333.2 | |
25 | 347.1 | 11/9 |
26 | 361 | |
27 | 374.8 | 41/33 |
28 | 388.7 | |
29 | 402.6 | 29/23 |
30 | 416.5 | 14/11 |
31 | 430.4 | 50/39 |
32 | 444.3 | |
33 | 458.1 | 43/33 |
34 | 472 | |
35 | 485.9 | |
36 | 499.8 | |
37 | 513.7 | 39/29 |
38 | 527.5 | 19/14 |
39 | 541.4 | 26/19, 41/30 |
40 | 555.3 | 51/37 |
41 | 569.2 | |
42 | 583.1 | 7/5 |
43 | 597 | |
44 | 610.8 | 37/26, 47/33 |
45 | 624.7 | 33/23, 43/30 |
46 | 638.6 | |
47 | 652.5 | |
48 | 666.4 | |
49 | 680.3 | 43/29 |
50 | 694.1 | |
51 | 708 | |
52 | 721.9 | 41/27, 47/31 |
53 | 735.8 | 26/17 |
54 | 749.7 | |
55 | 763.6 | 14/9 |
56 | 777.4 | 47/30 |
57 | 791.3 | 30/19 |
58 | 805.2 | 43/27 |
59 | 819.1 | |
60 | 833 | |
61 | 846.9 | 31/19 |
62 | 860.7 | 23/14, 51/31 |
63 | 874.6 | |
64 | 888.5 | |
65 | 902.4 | |
66 | 916.3 | |
67 | 930.2 | |
68 | 944 | 50/29 |
69 | 957.9 | |
70 | 971.8 | |
71 | 985.7 | |
72 | 999.6 | 41/23 |
73 | 1013.5 | |
74 | 1027.3 | |
75 | 1041.2 | 31/17, 42/23 |
76 | 1055.1 | |
77 | 1069 | |
78 | 1082.9 | 43/23 |
79 | 1096.7 | |
80 | 1110.6 | 19/10 |
81 | 1124.5 | |
82 | 1138.4 | 27/14 |
83 | 1152.3 | 37/19 |
84 | 1166.2 | 49/25, 51/26 |
85 | 1180 | |
86 | 1193.9 | |
87 | 1207.8 | |
88 | 1221.7 | |
89 | 1235.6 | 47/23 |
90 | 1249.5 | |
91 | 1263.3 | |
92 | 1277.2 | 23/11 |
93 | 1291.1 | |
94 | 1305 | |
95 | 1318.9 | 15/7 |
96 | 1332.8 | 41/19 |
97 | 1346.6 | 37/17 |
98 | 1360.5 | |
99 | 1374.4 | 42/19 |
100 | 1388.3 | 29/13 |
101 | 1402.2 | |
102 | 1416.1 | |
103 | 1429.9 | |
104 | 1443.8 | |
105 | 1457.7 | |
106 | 1471.6 | |
107 | 1485.5 | 33/14 |
108 | 1499.4 | |
109 | 1513.2 | |
110 | 1527.1 | |
111 | 1541 | |
112 | 1554.9 | 27/11 |
113 | 1568.8 | 47/19 |
114 | 1582.6 | |
115 | 1596.5 | |
116 | 1610.4 | |
117 | 1624.3 | 23/9 |
118 | 1638.2 | |
119 | 1652.1 | |
120 | 1665.9 | |
121 | 1679.8 | 29/11 |
122 | 1693.7 | |
123 | 1707.6 | |
124 | 1721.5 | |
125 | 1735.4 | 30/11 |
126 | 1749.2 | |
127 | 1763.1 | |
128 | 1777 | |
129 | 1790.9 | |
130 | 1804.8 | |
131 | 1818.7 | |
132 | 1832.5 | |
133 | 1846.4 | |
134 | 1860.3 | 41/14 |
135 | 1874.2 | |
136 | 1888.1 | |
137 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -6.07 | +0.00 | +1.74 | +4.15 | -6.07 | +4.71 | -4.33 | +0.00 | -1.93 | -0.34 | +1.74 |
Relative (%) | -43.7 | +0.0 | +12.5 | +29.9 | -43.7 | +34.0 | -31.2 | +0.0 | -13.9 | -2.4 | +12.5 | |
Steps (reduced) |
86 (86) |
137 (0) |
173 (36) |
201 (64) |
223 (86) |
243 (106) |
259 (122) |
274 (0) |
287 (13) |
299 (25) |
310 (36) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.99 | -1.36 | +4.15 | +3.48 | -4.30 | -6.07 | -2.49 | +5.88 | +4.71 | -6.41 | -0.07 |
Relative (%) | +14.4 | -9.8 | +29.9 | +25.0 | -31.0 | -43.7 | -18.0 | +42.4 | +34.0 | -46.2 | -0.5 | |
Steps (reduced) |
320 (46) |
329 (55) |
338 (64) |
346 (72) |
353 (79) |
360 (86) |
367 (93) |
374 (100) |
380 (106) |
385 (111) |
391 (117) |