136edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 135edt136edt137edt →
Prime factorization 23 × 17
Step size 13.985¢ 
Octave 86\136edt (1202.71¢) (→43\68edt)
Consistency limit 4
Distinct consistency limit 4

136 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 136edt or 136ed3), is a nonoctave tuning system that divides the interval of 3/1 into 136 equal parts of about 14 ¢ each. Each step represents a frequency ratio of 31/136, or the 136th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 13.985
2 27.97
3 41.955 41/40, 42/41, 43/42
4 55.94 31/30
5 69.925 51/49
6 83.91 21/20, 43/41
7 97.895 18/17, 37/35
8 111.88
9 125.865 43/40
10 139.85 13/12, 51/47
11 153.835 47/43
12 167.82 43/39, 54/49
13 181.805 10/9
14 195.789 47/42
15 209.774 35/31, 44/39
16 223.759 33/29, 41/36
17 237.744 31/27, 39/34, 47/41
18 251.729
19 265.714 7/6
20 279.699 20/17, 47/40
21 293.684 45/38, 51/43
22 307.669 37/31, 43/36, 49/41
23 321.654 47/39
24 335.639 17/14
25 349.624 49/40
26 363.609 37/30
27 377.594 46/37, 51/41
28 391.579
29 405.564 43/34
30 419.549 51/40
31 433.534 9/7
32 447.519 22/17
33 461.504 30/23, 47/36
34 475.489 25/19, 54/41
35 489.474
36 503.459
37 517.444 31/23
38 531.429
39 545.414 37/27
40 559.399 29/21, 47/34
41 573.383 39/28, 46/33
42 587.368
43 601.353 17/12
44 615.338
45 629.323
46 643.308 29/20
47 657.293
48 671.278
49 685.263 49/33
50 699.248
51 713.233
52 727.218 35/23
53 741.203 23/15, 43/28
54 755.188 17/11
55 769.173
56 783.158 11/7
57 797.143 46/29
58 811.128
59 825.113 29/18
60 839.098 13/8
61 853.083 18/11
62 867.068 33/20
63 881.053
64 895.038 47/28
65 909.023 49/29
66 923.008 29/17, 46/27
67 936.993
68 950.978
69 964.962
70 978.947 37/21, 51/29
71 992.932
72 1006.917
73 1020.902
74 1034.887 20/11
75 1048.872 11/6
76 1062.857 24/13
77 1076.842 41/22, 54/29
78 1090.827
79 1104.812
80 1118.797 21/11
81 1132.782
82 1146.767 33/17
83 1160.752 43/22, 45/23
84 1174.737
85 1188.722
86 1202.707
87 1216.692
88 1230.677
89 1244.662
90 1258.647
91 1272.632
92 1286.617
93 1300.602 36/17
94 1314.587 47/22
95 1328.572 28/13
96 1342.556
97 1356.541 46/21
98 1370.526
99 1384.511
100 1398.496
101 1412.481
102 1426.466 41/18
103 1440.451 23/10
104 1454.436 51/22
105 1468.421 7/3
106 1482.406 40/17
107 1496.391
108 1510.376
109 1524.361 41/17
110 1538.346
111 1552.331 49/20
112 1566.316 42/17
113 1580.301
114 1594.286
115 1608.271 38/15, 43/17
116 1622.256 51/20
117 1636.241 18/7
118 1650.226
119 1664.211 34/13
120 1678.196 29/11
121 1692.181
122 1706.166
123 1720.15 27/10
124 1734.135 49/18
125 1748.12
126 1762.105 36/13, 47/17
127 1776.09
128 1790.075
129 1804.06 17/6
130 1818.045 20/7
131 1832.03 49/17
132 1846.015
133 1860 41/14
134 1873.985
135 1887.97
136 1901.955 3/1

Harmonics

Approximation of harmonics in 136edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.71 +0.00 +5.41 -3.31 +2.71 +1.55 -5.86 +0.00 -0.60 +2.22 +5.41
Relative (%) +19.4 +0.0 +38.7 -23.6 +19.4 +11.1 -41.9 +0.0 -4.3 +15.8 +38.7
Steps
(reduced)
86
(86)
136
(0)
172
(36)
199
(63)
222
(86)
241
(105)
257
(121)
272
(0)
285
(13)
297
(25)
308
(36)
Approximation of harmonics in 136edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.69 +4.26 -3.31 -3.16 +3.77 +2.71 -6.99 +2.11 +1.55 +4.92 -2.11
Relative (%) +47.8 +30.4 -23.6 -22.6 +26.9 +19.4 -50.0 +15.1 +11.1 +35.2 -15.1
Steps
(reduced)
318
(46)
327
(55)
335
(63)
343
(71)
351
(79)
358
(86)
364
(92)
371
(99)
377
(105)
383
(111)
388
(116)