136edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 135edt 136edt 137edt →
Prime factorization 23 × 17
Step size 13.985¢ 
Octave 86\136edt (1202.71¢) (→43\68edt)
Consistency limit 4
Distinct consistency limit 4

136 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 136edt or 136ed3), is a nonoctave tuning system that divides the interval of 3/1 into 136 equal parts of about 14 ¢ each. Each step represents a frequency ratio of 31/136, or the 136th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 14
2 28
3 42 41/40, 42/41, 43/42
4 55.9 31/30
5 69.9 51/49
6 83.9 21/20, 43/41
7 97.9 18/17, 37/35
8 111.9
9 125.9 43/40
10 139.8 13/12, 51/47
11 153.8 47/43
12 167.8 43/39, 54/49
13 181.8 10/9
14 195.8 47/42
15 209.8 35/31, 44/39
16 223.8 33/29, 41/36
17 237.7 31/27, 39/34, 47/41
18 251.7
19 265.7 7/6
20 279.7 20/17, 47/40
21 293.7 45/38, 51/43
22 307.7 37/31, 43/36, 49/41
23 321.7 47/39
24 335.6 17/14
25 349.6 49/40
26 363.6 37/30
27 377.6 46/37, 51/41
28 391.6
29 405.6 43/34
30 419.5 51/40
31 433.5 9/7
32 447.5 22/17
33 461.5 30/23, 47/36
34 475.5 25/19, 54/41
35 489.5
36 503.5
37 517.4 31/23
38 531.4
39 545.4 37/27
40 559.4 29/21, 47/34
41 573.4 39/28, 46/33
42 587.4
43 601.4 17/12
44 615.3
45 629.3
46 643.3 29/20
47 657.3
48 671.3
49 685.3 49/33
50 699.2
51 713.2
52 727.2 35/23
53 741.2 23/15, 43/28
54 755.2 17/11
55 769.2
56 783.2 11/7
57 797.1 46/29
58 811.1
59 825.1 29/18
60 839.1 13/8
61 853.1 18/11
62 867.1 33/20
63 881.1
64 895 47/28
65 909 49/29
66 923 29/17, 46/27
67 937
68 951
69 965
70 978.9 37/21, 51/29
71 992.9
72 1006.9
73 1020.9
74 1034.9 20/11
75 1048.9 11/6
76 1062.9 24/13
77 1076.8 41/22, 54/29
78 1090.8
79 1104.8
80 1118.8 21/11
81 1132.8
82 1146.8 33/17
83 1160.8 43/22, 45/23
84 1174.7
85 1188.7
86 1202.7
87 1216.7
88 1230.7
89 1244.7
90 1258.6
91 1272.6
92 1286.6
93 1300.6 36/17
94 1314.6 47/22
95 1328.6 28/13
96 1342.6
97 1356.5 46/21
98 1370.5
99 1384.5
100 1398.5
101 1412.5
102 1426.5 41/18
103 1440.5 23/10
104 1454.4 51/22
105 1468.4 7/3
106 1482.4 40/17
107 1496.4
108 1510.4
109 1524.4 41/17
110 1538.3
111 1552.3 49/20
112 1566.3 42/17
113 1580.3
114 1594.3
115 1608.3 38/15, 43/17
116 1622.3 51/20
117 1636.2 18/7
118 1650.2
119 1664.2 34/13
120 1678.2 29/11
121 1692.2
122 1706.2
123 1720.2 27/10
124 1734.1 49/18
125 1748.1
126 1762.1 36/13, 47/17
127 1776.1
128 1790.1
129 1804.1 17/6
130 1818 20/7
131 1832 49/17
132 1846
133 1860 41/14
134 1874
135 1888
136 1902 3/1

Harmonics

Approximation of harmonics in 136edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.71 +0.00 +5.41 -3.31 +2.71 +1.55 -5.86 +0.00 -0.60 +2.22 +5.41
Relative (%) +19.4 +0.0 +38.7 -23.6 +19.4 +11.1 -41.9 +0.0 -4.3 +15.8 +38.7
Steps
(reduced)
86
(86)
136
(0)
172
(36)
199
(63)
222
(86)
241
(105)
257
(121)
272
(0)
285
(13)
297
(25)
308
(36)
Approximation of harmonics in 136edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.69 +4.26 -3.31 -3.16 +3.77 +2.71 -6.99 +2.11 +1.55 +4.92 -2.11
Relative (%) +47.8 +30.4 -23.6 -22.6 +26.9 +19.4 -50.0 +15.1 +11.1 +35.2 -15.1
Steps
(reduced)
318
(46)
327
(55)
335
(63)
343
(71)
351
(79)
358
(86)
364
(92)
371
(99)
377
(105)
383
(111)
388
(116)