135edt
Jump to navigation
Jump to search
Prime factorization
33 × 5
Step size
14.0886¢
Octave
85\135edt (1197.53¢) (→17\27edt)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 134edt | 135edt | 136edt → |
135 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 135edt or 135ed3), is a nonoctave tuning system that divides the interval of 3/1 into 135 equal parts of about 14.1 ¢ each. Each step represents a frequency ratio of 31/135, or the 135th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 14.1 | 9.6 | |
2 | 28.2 | 19.3 | |
3 | 42.3 | 28.9 | 40/39, 41/40, 42/41, 43/42 |
4 | 56.4 | 38.5 | 31/30 |
5 | 70.4 | 48.1 | 49/47, 51/49 |
6 | 84.5 | 57.8 | 21/20 |
7 | 98.6 | 67.4 | 18/17 |
8 | 112.7 | 77 | 47/44 |
9 | 126.8 | 86.7 | 14/13, 43/40 |
10 | 140.9 | 96.3 | 38/35, 51/47 |
11 | 155 | 105.9 | 47/43 |
12 | 169.1 | 115.6 | 43/39 |
13 | 183.2 | 125.2 | 10/9 |
14 | 197.2 | 134.8 | 37/33 |
15 | 211.3 | 144.4 | 26/23, 35/31 |
16 | 225.4 | 154.1 | 33/29, 41/36, 49/43 |
17 | 239.5 | 163.7 | 31/27 |
18 | 253.6 | 173.3 | 22/19 |
19 | 267.7 | 183 | 7/6 |
20 | 281.8 | 192.6 | 20/17 |
21 | 295.9 | 202.2 | 51/43 |
22 | 309.9 | 211.9 | 49/41 |
23 | 324 | 221.5 | 35/29, 41/34, 47/39 |
24 | 338.1 | 231.1 | 45/37 |
25 | 352.2 | 240.7 | 38/31, 49/40 |
26 | 366.3 | 250.4 | 21/17, 47/38 |
27 | 380.4 | 260 | |
28 | 394.5 | 269.6 | 44/35, 49/39 |
29 | 408.6 | 279.3 | 19/15 |
30 | 422.7 | 288.9 | 23/18, 37/29 |
31 | 436.7 | 298.5 | 9/7 |
32 | 450.8 | 308.1 | 35/27 |
33 | 464.9 | 317.8 | 17/13 |
34 | 479 | 327.4 | 29/22, 33/25 |
35 | 493.1 | 337 | |
36 | 507.2 | 346.7 | |
37 | 521.3 | 356.3 | 27/20, 50/37 |
38 | 535.4 | 365.9 | 15/11, 49/36 |
39 | 549.5 | 375.6 | |
40 | 563.5 | 385.2 | 18/13 |
41 | 577.6 | 394.8 | |
42 | 591.7 | 404.4 | 38/27 |
43 | 605.8 | 414.1 | 44/31 |
44 | 619.9 | 423.7 | |
45 | 634 | 433.3 | 49/34 |
46 | 648.1 | 443 | |
47 | 662.2 | 452.6 | 22/15 |
48 | 676.3 | 462.2 | 34/23 |
49 | 690.3 | 471.9 | |
50 | 704.4 | 481.5 | |
51 | 718.5 | 491.1 | 50/33 |
52 | 732.6 | 500.7 | 29/19 |
53 | 746.7 | 510.4 | 20/13 |
54 | 760.8 | 520 | 45/29 |
55 | 774.9 | 529.6 | 36/23 |
56 | 789 | 539.3 | 41/26 |
57 | 803 | 548.9 | 35/22 |
58 | 817.1 | 558.5 | |
59 | 831.2 | 568.1 | 21/13 |
60 | 845.3 | 577.8 | 44/27 |
61 | 859.4 | 587.4 | 23/14 |
62 | 873.5 | 597 | |
63 | 887.6 | 606.7 | |
64 | 901.7 | 616.3 | 37/22 |
65 | 915.8 | 625.9 | 39/23 |
66 | 929.8 | 635.6 | |
67 | 943.9 | 645.2 | 50/29 |
68 | 958 | 654.8 | 40/23, 47/27 |
69 | 972.1 | 664.4 | |
70 | 986.2 | 674.1 | 23/13 |
71 | 1000.3 | 683.7 | 41/23 |
72 | 1014.4 | 693.3 | |
73 | 1028.5 | 703 | 38/21 |
74 | 1042.6 | 712.6 | 42/23 |
75 | 1056.6 | 722.2 | 35/19 |
76 | 1070.7 | 731.9 | 13/7 |
77 | 1084.8 | 741.5 | 43/23 |
78 | 1098.9 | 751.1 | |
79 | 1113 | 760.7 | |
80 | 1127.1 | 770.4 | 23/12 |
81 | 1141.2 | 780 | 29/15 |
82 | 1155.3 | 789.6 | 37/19, 39/20 |
83 | 1169.4 | 799.3 | |
84 | 1183.4 | 808.9 | |
85 | 1197.5 | 818.5 | |
86 | 1211.6 | 828.1 | |
87 | 1225.7 | 837.8 | |
88 | 1239.8 | 847.4 | 43/21, 45/22 |
89 | 1253.9 | 857 | |
90 | 1268 | 866.7 | |
91 | 1282.1 | 876.3 | 44/21 |
92 | 1296.1 | 885.9 | |
93 | 1310.2 | 895.6 | 49/23 |
94 | 1324.3 | 905.2 | 43/20 |
95 | 1338.4 | 914.8 | 13/6 |
96 | 1352.5 | 924.4 | |
97 | 1366.6 | 934.1 | 11/5 |
98 | 1380.7 | 943.7 | 20/9 |
99 | 1394.8 | 953.3 | 47/21 |
100 | 1408.9 | 963 | |
101 | 1422.9 | 972.6 | 25/11 |
102 | 1437 | 982.2 | 39/17 |
103 | 1451.1 | 991.9 | |
104 | 1465.2 | 1001.5 | 7/3 |
105 | 1479.3 | 1011.1 | 47/20 |
106 | 1493.4 | 1020.7 | 45/19 |
107 | 1507.5 | 1030.4 | 43/18 |
108 | 1521.6 | 1040 | |
109 | 1535.7 | 1049.6 | 17/7 |
110 | 1549.7 | 1059.3 | 49/20 |
111 | 1563.8 | 1068.9 | 37/15 |
112 | 1577.9 | 1078.5 | |
113 | 1592 | 1088.1 | |
114 | 1606.1 | 1097.8 | 43/17 |
115 | 1620.2 | 1107.4 | 51/20 |
116 | 1634.3 | 1117 | 18/7 |
117 | 1648.4 | 1126.7 | |
118 | 1662.4 | 1136.3 | 47/18 |
119 | 1676.5 | 1145.9 | 29/11, 50/19 |
120 | 1690.6 | 1155.6 | |
121 | 1704.7 | 1165.2 | |
122 | 1718.8 | 1174.8 | 27/10 |
123 | 1732.9 | 1184.4 | 49/18 |
124 | 1747 | 1194.1 | |
125 | 1761.1 | 1203.7 | 47/17 |
126 | 1775.2 | 1213.3 | 39/14 |
127 | 1789.2 | 1223 | |
128 | 1803.3 | 1232.6 | 17/6 |
129 | 1817.4 | 1242.2 | 20/7 |
130 | 1831.5 | 1251.9 | 49/17 |
131 | 1845.6 | 1261.5 | |
132 | 1859.7 | 1271.1 | 41/14 |
133 | 1873.8 | 1280.7 | |
134 | 1887.9 | 1290.4 | |
135 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.47 | +0.00 | -4.95 | +3.22 | -2.47 | -1.66 | +6.67 | +0.00 | +0.75 | +4.81 | -4.95 |
Relative (%) | -17.6 | +0.0 | -35.1 | +22.9 | -17.6 | -11.8 | +47.3 | +0.0 | +5.3 | +34.1 | -35.1 | |
Steps (reduced) |
85 (85) |
135 (0) |
170 (35) |
198 (63) |
220 (85) |
239 (104) |
256 (121) |
270 (0) |
283 (13) |
295 (25) |
305 (35) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +4.20 | -2.14 | -2.47 | +2.54 | -1.73 | -1.66 | +2.33 | -4.18 |
Relative (%) | -18.7 | -29.3 | +22.9 | +29.8 | -15.2 | -17.6 | +18.1 | -12.2 | -11.8 | +16.6 | -29.7 | |
Steps (reduced) |
315 (45) |
324 (54) |
333 (63) |
341 (71) |
348 (78) |
355 (85) |
362 (92) |
368 (98) |
374 (104) |
380 (110) |
385 (115) |