135edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 134edt135edt136edt →
Prime factorization 33 × 5
Step size 14.0886¢ 
Octave 85\135edt (1197.53¢) (→17\27edt)
Consistency limit 4
Distinct consistency limit 4

135 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 135edt or 135ed3), is a nonoctave tuning system that divides the interval of 3/1 into 135 equal parts of about 14.1 ¢ each. Each step represents a frequency ratio of 31/135, or the 135th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.089
2 28.177
3 42.266 40/39, 41/40, 42/41, 43/42
4 56.354 31/30
5 70.443 49/47, 51/49
6 84.531 21/20
7 98.62 18/17
8 112.708 47/44
9 126.797 14/13, 43/40
10 140.886 38/35, 51/47
11 154.974 47/43
12 169.063 43/39
13 183.151 10/9
14 197.24 37/33
15 211.328 26/23, 35/31
16 225.417 33/29, 41/36, 49/43
17 239.505 31/27
18 253.594 22/19
19 267.683 7/6
20 281.771 20/17
21 295.86 51/43
22 309.948 49/41
23 324.037 35/29, 41/34, 47/39
24 338.125 45/37
25 352.214 38/31, 49/40
26 366.302 21/17, 47/38
27 380.391
28 394.48 44/35, 49/39
29 408.568 19/15
30 422.657 23/18, 37/29
31 436.745 9/7
32 450.834 35/27
33 464.922 17/13
34 479.011 29/22, 33/25
35 493.099
36 507.188
37 521.277 27/20, 50/37
38 535.365 15/11, 49/36
39 549.454
40 563.542 18/13
41 577.631
42 591.719 38/27
43 605.808 44/31
44 619.896
45 633.985 49/34
46 648.074
47 662.162 22/15
48 676.251 34/23
49 690.339
50 704.428
51 718.516 50/33
52 732.605 29/19
53 746.693 20/13
54 760.782 45/29
55 774.871 36/23
56 788.959 41/26
57 803.048 35/22
58 817.136
59 831.225 21/13
60 845.313 44/27
61 859.402 23/14
62 873.49
63 887.579
64 901.668 37/22
65 915.756 39/23
66 929.845
67 943.933 50/29
68 958.022 40/23, 47/27
69 972.11
70 986.199 23/13
71 1000.287 41/23
72 1014.376
73 1028.465 38/21
74 1042.553 42/23
75 1056.642 35/19
76 1070.73 13/7
77 1084.819 43/23
78 1098.907
79 1112.996
80 1127.084 23/12
81 1141.173 29/15
82 1155.262 37/19, 39/20
83 1169.35
84 1183.439
85 1197.527
86 1211.616
87 1225.704
88 1239.793 43/21, 45/22
89 1253.881
90 1267.97
91 1282.059 44/21
92 1296.147
93 1310.236 49/23
94 1324.324 43/20
95 1338.413 13/6
96 1352.501
97 1366.59 11/5
98 1380.678 20/9
99 1394.767 47/21
100 1408.856
101 1422.944 25/11
102 1437.033 39/17
103 1451.121
104 1465.21 7/3
105 1479.298 47/20
106 1493.387 45/19
107 1507.475 43/18
108 1521.564
109 1535.653 17/7
110 1549.741 49/20
111 1563.83 37/15
112 1577.918
113 1592.007
114 1606.095 43/17
115 1620.184 51/20
116 1634.272 18/7
117 1648.361
118 1662.45 47/18
119 1676.538 29/11, 50/19
120 1690.627
121 1704.715
122 1718.804 27/10
123 1732.892 49/18
124 1746.981
125 1761.069 47/17
126 1775.158 39/14
127 1789.247
128 1803.335 17/6
129 1817.424 20/7
130 1831.512 49/17
131 1845.601
132 1859.689 41/14
133 1873.778
134 1887.866
135 1901.955 3/1

Harmonics

Approximation of harmonics in 135edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.47 +0.00 -4.95 +3.22 -2.47 -1.66 +6.67 +0.00 +0.75 +4.81 -4.95
Relative (%) -17.6 +0.0 -35.1 +22.9 -17.6 -11.8 +47.3 +0.0 +5.3 +34.1 -35.1
Steps
(reduced)
85
(85)
135
(0)
170
(35)
198
(63)
220
(85)
239
(104)
256
(121)
270
(0)
283
(13)
295
(25)
305
(35)
Approximation of harmonics in 135edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -4.13 +3.22 +4.20 -2.14 -2.47 +2.54 -1.73 -1.66 +2.33 -4.18
Relative (%) -18.7 -29.3 +22.9 +29.8 -15.2 -17.6 +18.1 -12.2 -11.8 +16.6 -29.7
Steps
(reduced)
315
(45)
324
(54)
333
(63)
341
(71)
348
(78)
355
(85)
362
(92)
368
(98)
374
(104)
380
(110)
385
(115)