135edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 134edt 135edt 136edt →
Prime factorization 33 × 5
Step size 14.0886¢ 
Octave 85\135edt (1197.53¢) (→17\27edt)
Consistency limit 4
Distinct consistency limit 4

135 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 135edt or 135ed3), is a nonoctave tuning system that divides the interval of 3/1 into 135 equal parts of about 14.1 ¢ each. Each step represents a frequency ratio of 31/135, or the 135th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 14.1
2 28.2
3 42.3 40/39, 41/40, 42/41, 43/42
4 56.4 31/30
5 70.4 49/47, 51/49
6 84.5 21/20
7 98.6 18/17
8 112.7 47/44
9 126.8 14/13, 43/40
10 140.9 38/35, 51/47
11 155 47/43
12 169.1 43/39
13 183.2 10/9
14 197.2 37/33
15 211.3 26/23, 35/31
16 225.4 33/29, 41/36, 49/43
17 239.5 31/27
18 253.6 22/19
19 267.7 7/6
20 281.8 20/17
21 295.9 51/43
22 309.9 49/41
23 324 35/29, 41/34, 47/39
24 338.1 45/37
25 352.2 38/31, 49/40
26 366.3 21/17, 47/38
27 380.4
28 394.5 44/35, 49/39
29 408.6 19/15
30 422.7 23/18, 37/29
31 436.7 9/7
32 450.8 35/27
33 464.9 17/13
34 479 29/22, 33/25
35 493.1
36 507.2
37 521.3 27/20, 50/37
38 535.4 15/11, 49/36
39 549.5
40 563.5 18/13
41 577.6
42 591.7 38/27
43 605.8 44/31
44 619.9
45 634 49/34
46 648.1
47 662.2 22/15
48 676.3 34/23
49 690.3
50 704.4
51 718.5 50/33
52 732.6 29/19
53 746.7 20/13
54 760.8 45/29
55 774.9 36/23
56 789 41/26
57 803 35/22
58 817.1
59 831.2 21/13
60 845.3 44/27
61 859.4 23/14
62 873.5
63 887.6
64 901.7 37/22
65 915.8 39/23
66 929.8
67 943.9 50/29
68 958 40/23, 47/27
69 972.1
70 986.2 23/13
71 1000.3 41/23
72 1014.4
73 1028.5 38/21
74 1042.6 42/23
75 1056.6 35/19
76 1070.7 13/7
77 1084.8 43/23
78 1098.9
79 1113
80 1127.1 23/12
81 1141.2 29/15
82 1155.3 37/19, 39/20
83 1169.4
84 1183.4
85 1197.5
86 1211.6
87 1225.7
88 1239.8 43/21, 45/22
89 1253.9
90 1268
91 1282.1 44/21
92 1296.1
93 1310.2 49/23
94 1324.3 43/20
95 1338.4 13/6
96 1352.5
97 1366.6 11/5
98 1380.7 20/9
99 1394.8 47/21
100 1408.9
101 1422.9 25/11
102 1437 39/17
103 1451.1
104 1465.2 7/3
105 1479.3 47/20
106 1493.4 45/19
107 1507.5 43/18
108 1521.6
109 1535.7 17/7
110 1549.7 49/20
111 1563.8 37/15
112 1577.9
113 1592
114 1606.1 43/17
115 1620.2 51/20
116 1634.3 18/7
117 1648.4
118 1662.4 47/18
119 1676.5 29/11, 50/19
120 1690.6
121 1704.7
122 1718.8 27/10
123 1732.9 49/18
124 1747
125 1761.1 47/17
126 1775.2 39/14
127 1789.2
128 1803.3 17/6
129 1817.4 20/7
130 1831.5 49/17
131 1845.6
132 1859.7 41/14
133 1873.8
134 1887.9
135 1902 3/1

Harmonics

Approximation of harmonics in 135edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -2.47 +0.00 -4.95 +3.22 -2.47 -1.66 +6.67 +0.00 +0.75 +4.81 -4.95
Relative (%) -17.6 +0.0 -35.1 +22.9 -17.6 -11.8 +47.3 +0.0 +5.3 +34.1 -35.1
Steps
(reduced)
85
(85)
135
(0)
170
(35)
198
(63)
220
(85)
239
(104)
256
(121)
270
(0)
283
(13)
295
(25)
305
(35)
Approximation of harmonics in 135edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -4.13 +3.22 +4.20 -2.14 -2.47 +2.54 -1.73 -1.66 +2.33 -4.18
Relative (%) -18.7 -29.3 +22.9 +29.8 -15.2 -17.6 +18.1 -12.2 -11.8 +16.6 -29.7
Steps
(reduced)
315
(45)
324
(54)
333
(63)
341
(71)
348
(78)
355
(85)
362
(92)
368
(98)
374
(104)
380
(110)
385
(115)