134edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 133edt 134edt 135edt →
Prime factorization 2 × 67
Step size 14.1937¢ 
Octave 85\134edt (1206.46¢)
Consistency limit 2
Distinct consistency limit 2

134 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 134edt or 134ed3), is a nonoctave tuning system that divides the interval of 3/1 into 134 equal parts of about 14.2⁠ ⁠¢ each. Each step represents a frequency ratio of 31/134, or the 134th root of 3. 134edt is notable for being a close-to-optimal tuning of Mintra temperament in the no-twos 11-limit and supporting its extensions to primes 13 and 37.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 14.2 9.7
2 28.4 19.4
3 42.6 29.1 42/41
4 56.8 38.8 31/30
5 71 48.5
6 85.2 58.2 41/39
7 99.4 67.9 18/17
8 113.5 77.6 47/44
9 127.7 87.3 14/13
10 141.9 97 51/47
11 156.1 106.7 23/21
12 170.3 116.4 43/39
13 184.5 126.1
14 198.7 135.8 37/33, 46/41
15 212.9 145.5 43/38
16 227.1 155.2
17 241.3 164.9
18 255.5 174.6 22/19, 51/44
19 269.7 184.3
20 283.9 194
21 298.1 203.7
22 312.3 213.4
23 326.5 223.1
24 340.6 232.8
25 354.8 242.5 27/22
26 369 252.2 47/38
27 383.2 261.9
28 397.4 271.6 39/31
29 411.6 281.3
30 425.8 291
31 440 300.7
32 454.2 310.4 13/10
33 468.4 320.1 38/29
34 482.6 329.9 41/31
35 496.8 339.6
36 511 349.3 51/38
37 525.2 359 42/31
38 539.4 368.7 41/30
39 553.6 378.4
40 567.7 388.1 43/31
41 581.9 397.8 7/5
42 596.1 407.5
43 610.3 417.2
44 624.5 426.9 33/23, 43/30
45 638.7 436.6
46 652.9 446.3
47 667.1 456
48 681.3 465.7 43/29
49 695.5 475.4
50 709.7 485.1
51 723.9 494.8 41/27
52 738.1 504.5
53 752.3 514.2
54 766.5 523.9 14/9
55 780.7 533.6
56 794.8 543.3
57 809 553
58 823.2 562.7 37/23
59 837.4 572.4 47/29
60 851.6 582.1
61 865.8 591.8
62 880 601.5
63 894.2 611.2
64 908.4 620.9
65 922.6 630.6 46/27
66 936.8 640.3
67 951 650
68 965.2 659.7
69 979.4 669.4 37/21
70 993.6 679.1
71 1007.8 688.8
72 1021.9 698.5
73 1036.1 708.2
74 1050.3 717.9
75 1064.5 727.6
76 1078.7 737.3 41/22
77 1092.9 747
78 1107.1 756.7
79 1121.3 766.4
80 1135.5 776.1 27/14
81 1149.7 785.8
82 1163.9 795.5 49/25
83 1178.1 805.2
84 1192.3 814.9
85 1206.5 824.6
86 1220.7 834.3
87 1234.9 844
88 1249 853.7
89 1263.2 863.4
90 1277.4 873.1 23/11
91 1291.6 882.8
92 1305.8 892.5
93 1320 902.2 15/7
94 1334.2 911.9
95 1348.4 921.6
96 1362.6 931.3
97 1376.8 941 31/14
98 1391 950.7 38/17
99 1405.2 960.4
100 1419.4 970.1
101 1433.6 979.9
102 1447.8 989.6 30/13
103 1462 999.3
104 1476.1 1009
105 1490.3 1018.7
106 1504.5 1028.4 31/13
107 1518.7 1038.1
108 1532.9 1047.8
109 1547.1 1057.5 22/9
110 1561.3 1067.2
111 1575.5 1076.9
112 1589.7 1086.6
113 1603.9 1096.3
114 1618.1 1106
115 1632.3 1115.7
116 1646.5 1125.4 44/17
117 1660.7 1135.1 47/18
118 1674.9 1144.8 50/19
119 1689 1154.5
120 1703.2 1164.2
121 1717.4 1173.9
122 1731.6 1183.6
123 1745.8 1193.3
124 1760 1203 47/17
125 1774.2 1212.7 39/14
126 1788.4 1222.4
127 1802.6 1232.1 17/6
128 1816.8 1241.8
129 1831 1251.5
130 1845.2 1261.2
131 1859.4 1270.9 41/14
132 1873.6 1280.6
133 1887.8 1290.3
134 1902 1300 3/1

Harmonics

Approximation of harmonics in 134edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.46 +0.00 -1.27 -4.35 +6.46 -4.92 +5.20 +0.00 +2.11 -6.76 -1.27
Relative (%) +45.5 +0.0 -8.9 -30.6 +45.5 -34.7 +36.6 +0.0 +14.9 -47.6 -8.9
Steps
(reduced)
85
(85)
134
(0)
169
(35)
196
(62)
219
(85)
237
(103)
254
(120)
268
(0)
281
(13)
292
(24)
303
(35)
Approximation of harmonics in 134edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.10 +1.54 -4.35 -2.53 +6.06 +6.46 -1.98 -5.62 -4.92 -0.30 -6.28
Relative (%) +14.8 +10.9 -30.6 -17.8 +42.7 +45.5 -13.9 -39.6 -34.7 -2.1 -44.3
Steps
(reduced)
313
(45)
322
(54)
330
(62)
338
(70)
346
(78)
353
(85)
359
(91)
365
(97)
371
(103)
377
(109)
382
(114)