134edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 133edt134edt135edt →
Prime factorization 2 × 67
Step size 14.1937¢ 
Octave 85\134edt (1206.46¢)
Consistency limit 2
Distinct consistency limit 2

134 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 134edt or 134ed3), is a nonoctave tuning system that divides the interval of 3/1 into 134 equal parts of about 14.2 ¢ each. Each step represents a frequency ratio of 31/134, or the 134th root of 3. 134edt is notable for being a close-to-optimal tuning of Mintra temperament in the no-twos 11-limit and supporting its extensions to primes 13 and 37.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.194
2 28.387
3 42.581 42/41
4 56.775 31/30
5 70.968
6 85.162 41/39
7 99.356 18/17
8 113.55 47/44
9 127.743 14/13
10 141.937 51/47
11 156.131 23/21
12 170.324 43/39
13 184.518
14 198.712 37/33, 46/41
15 212.905 43/38
16 227.099
17 241.293
18 255.486 22/19, 51/44
19 269.68
20 283.874
21 298.068
22 312.261
23 326.455
24 340.649
25 354.842 27/22
26 369.036 47/38
27 383.23
28 397.423 39/31
29 411.617
30 425.811
31 440.005
32 454.198 13/10
33 468.392 38/29
34 482.586 41/31
35 496.779
36 510.973 51/38
37 525.167 42/31
38 539.36 41/30
39 553.554
40 567.748 43/31
41 581.941 7/5
42 596.135
43 610.329
44 624.523 33/23, 43/30
45 638.716
46 652.91
47 667.104
48 681.297 43/29
49 695.491
50 709.685
51 723.878 41/27
52 738.072
53 752.266
54 766.459 14/9
55 780.653
56 794.847
57 809.041
58 823.234 37/23
59 837.428 47/29
60 851.622
61 865.815
62 880.009
63 894.203
64 908.396
65 922.59 46/27
66 936.784
67 950.978
68 965.171
69 979.365 37/21
70 993.559
71 1007.752
72 1021.946
73 1036.14
74 1050.333
75 1064.527
76 1078.721 41/22
77 1092.914
78 1107.108
79 1121.302
80 1135.496 27/14
81 1149.689
82 1163.883 49/25
83 1178.077
84 1192.27
85 1206.464
86 1220.658
87 1234.851
88 1249.045
89 1263.239
90 1277.432 23/11
91 1291.626
92 1305.82
93 1320.014 15/7
94 1334.207
95 1348.401
96 1362.595
97 1376.788 31/14
98 1390.982 38/17
99 1405.176
100 1419.369
101 1433.563
102 1447.757 30/13
103 1461.95
104 1476.144
105 1490.338
106 1504.532 31/13
107 1518.725
108 1532.919
109 1547.113 22/9
110 1561.306
111 1575.5
112 1589.694
113 1603.887
114 1618.081
115 1632.275
116 1646.469 44/17
117 1660.662 47/18
118 1674.856 50/19
119 1689.05
120 1703.243
121 1717.437
122 1731.631
123 1745.824
124 1760.018 47/17
125 1774.212 39/14
126 1788.405
127 1802.599 17/6
128 1816.793
129 1830.987
130 1845.18
131 1859.374 41/14
132 1873.568
133 1887.761
134 1901.955 3/1

Harmonics

Approximation of harmonics in 134edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.46 +0.00 -1.27 -4.35 +6.46 -4.92 +5.20 +0.00 +2.11 -6.76 -1.27
Relative (%) +45.5 +0.0 -8.9 -30.6 +45.5 -34.7 +36.6 +0.0 +14.9 -47.6 -8.9
Steps
(reduced)
85
(85)
134
(0)
169
(35)
196
(62)
219
(85)
237
(103)
254
(120)
268
(0)
281
(13)
292
(24)
303
(35)
Approximation of harmonics in 134edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.10 +1.54 -4.35 -2.53 +6.06 +6.46 -1.98 -5.62 -4.92 -0.30 -6.28
Relative (%) +14.8 +10.9 -30.6 -17.8 +42.7 +45.5 -13.9 -39.6 -34.7 -2.1 -44.3
Steps
(reduced)
313
(45)
322
(54)
330
(62)
338
(70)
346
(78)
353
(85)
359
(91)
365
(97)
371
(103)
377
(109)
382
(114)