134edt
Jump to navigation
Jump to search
Prime factorization
2 × 67
Step size
14.1937¢
Octave
85\134edt (1206.46¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 133edt | 134edt | 135edt → |
134 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 134edt or 134ed3), is a nonoctave tuning system that divides the interval of 3/1 into 134 equal parts of about 14.2 ¢ each. Each step represents a frequency ratio of 31/134, or the 134th root of 3. 134edt is notable for being a close-to-optimal tuning of Mintra temperament in the no-twos 11-limit and supporting its extensions to primes 13 and 37.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 14.2 | 9.7 | |
2 | 28.4 | 19.4 | |
3 | 42.6 | 29.1 | 42/41 |
4 | 56.8 | 38.8 | 31/30 |
5 | 71 | 48.5 | |
6 | 85.2 | 58.2 | 41/39 |
7 | 99.4 | 67.9 | 18/17 |
8 | 113.5 | 77.6 | 47/44 |
9 | 127.7 | 87.3 | 14/13 |
10 | 141.9 | 97 | 51/47 |
11 | 156.1 | 106.7 | 23/21 |
12 | 170.3 | 116.4 | 43/39 |
13 | 184.5 | 126.1 | |
14 | 198.7 | 135.8 | 37/33, 46/41 |
15 | 212.9 | 145.5 | 43/38 |
16 | 227.1 | 155.2 | |
17 | 241.3 | 164.9 | |
18 | 255.5 | 174.6 | 22/19, 51/44 |
19 | 269.7 | 184.3 | |
20 | 283.9 | 194 | |
21 | 298.1 | 203.7 | |
22 | 312.3 | 213.4 | |
23 | 326.5 | 223.1 | |
24 | 340.6 | 232.8 | |
25 | 354.8 | 242.5 | 27/22 |
26 | 369 | 252.2 | 47/38 |
27 | 383.2 | 261.9 | |
28 | 397.4 | 271.6 | 39/31 |
29 | 411.6 | 281.3 | |
30 | 425.8 | 291 | |
31 | 440 | 300.7 | |
32 | 454.2 | 310.4 | 13/10 |
33 | 468.4 | 320.1 | 38/29 |
34 | 482.6 | 329.9 | 41/31 |
35 | 496.8 | 339.6 | |
36 | 511 | 349.3 | 51/38 |
37 | 525.2 | 359 | 42/31 |
38 | 539.4 | 368.7 | 41/30 |
39 | 553.6 | 378.4 | |
40 | 567.7 | 388.1 | 43/31 |
41 | 581.9 | 397.8 | 7/5 |
42 | 596.1 | 407.5 | |
43 | 610.3 | 417.2 | |
44 | 624.5 | 426.9 | 33/23, 43/30 |
45 | 638.7 | 436.6 | |
46 | 652.9 | 446.3 | |
47 | 667.1 | 456 | |
48 | 681.3 | 465.7 | 43/29 |
49 | 695.5 | 475.4 | |
50 | 709.7 | 485.1 | |
51 | 723.9 | 494.8 | 41/27 |
52 | 738.1 | 504.5 | |
53 | 752.3 | 514.2 | |
54 | 766.5 | 523.9 | 14/9 |
55 | 780.7 | 533.6 | |
56 | 794.8 | 543.3 | |
57 | 809 | 553 | |
58 | 823.2 | 562.7 | 37/23 |
59 | 837.4 | 572.4 | 47/29 |
60 | 851.6 | 582.1 | |
61 | 865.8 | 591.8 | |
62 | 880 | 601.5 | |
63 | 894.2 | 611.2 | |
64 | 908.4 | 620.9 | |
65 | 922.6 | 630.6 | 46/27 |
66 | 936.8 | 640.3 | |
67 | 951 | 650 | |
68 | 965.2 | 659.7 | |
69 | 979.4 | 669.4 | 37/21 |
70 | 993.6 | 679.1 | |
71 | 1007.8 | 688.8 | |
72 | 1021.9 | 698.5 | |
73 | 1036.1 | 708.2 | |
74 | 1050.3 | 717.9 | |
75 | 1064.5 | 727.6 | |
76 | 1078.7 | 737.3 | 41/22 |
77 | 1092.9 | 747 | |
78 | 1107.1 | 756.7 | |
79 | 1121.3 | 766.4 | |
80 | 1135.5 | 776.1 | 27/14 |
81 | 1149.7 | 785.8 | |
82 | 1163.9 | 795.5 | 49/25 |
83 | 1178.1 | 805.2 | |
84 | 1192.3 | 814.9 | |
85 | 1206.5 | 824.6 | |
86 | 1220.7 | 834.3 | |
87 | 1234.9 | 844 | |
88 | 1249 | 853.7 | |
89 | 1263.2 | 863.4 | |
90 | 1277.4 | 873.1 | 23/11 |
91 | 1291.6 | 882.8 | |
92 | 1305.8 | 892.5 | |
93 | 1320 | 902.2 | 15/7 |
94 | 1334.2 | 911.9 | |
95 | 1348.4 | 921.6 | |
96 | 1362.6 | 931.3 | |
97 | 1376.8 | 941 | 31/14 |
98 | 1391 | 950.7 | 38/17 |
99 | 1405.2 | 960.4 | |
100 | 1419.4 | 970.1 | |
101 | 1433.6 | 979.9 | |
102 | 1447.8 | 989.6 | 30/13 |
103 | 1462 | 999.3 | |
104 | 1476.1 | 1009 | |
105 | 1490.3 | 1018.7 | |
106 | 1504.5 | 1028.4 | 31/13 |
107 | 1518.7 | 1038.1 | |
108 | 1532.9 | 1047.8 | |
109 | 1547.1 | 1057.5 | 22/9 |
110 | 1561.3 | 1067.2 | |
111 | 1575.5 | 1076.9 | |
112 | 1589.7 | 1086.6 | |
113 | 1603.9 | 1096.3 | |
114 | 1618.1 | 1106 | |
115 | 1632.3 | 1115.7 | |
116 | 1646.5 | 1125.4 | 44/17 |
117 | 1660.7 | 1135.1 | 47/18 |
118 | 1674.9 | 1144.8 | 50/19 |
119 | 1689 | 1154.5 | |
120 | 1703.2 | 1164.2 | |
121 | 1717.4 | 1173.9 | |
122 | 1731.6 | 1183.6 | |
123 | 1745.8 | 1193.3 | |
124 | 1760 | 1203 | 47/17 |
125 | 1774.2 | 1212.7 | 39/14 |
126 | 1788.4 | 1222.4 | |
127 | 1802.6 | 1232.1 | 17/6 |
128 | 1816.8 | 1241.8 | |
129 | 1831 | 1251.5 | |
130 | 1845.2 | 1261.2 | |
131 | 1859.4 | 1270.9 | 41/14 |
132 | 1873.6 | 1280.6 | |
133 | 1887.8 | 1290.3 | |
134 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.46 | +0.00 | -1.27 | -4.35 | +6.46 | -4.92 | +5.20 | +0.00 | +2.11 | -6.76 | -1.27 |
Relative (%) | +45.5 | +0.0 | -8.9 | -30.6 | +45.5 | -34.7 | +36.6 | +0.0 | +14.9 | -47.6 | -8.9 | |
Steps (reduced) |
85 (85) |
134 (0) |
169 (35) |
196 (62) |
219 (85) |
237 (103) |
254 (120) |
268 (0) |
281 (13) |
292 (24) |
303 (35) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.10 | +1.54 | -4.35 | -2.53 | +6.06 | +6.46 | -1.98 | -5.62 | -4.92 | -0.30 | -6.28 |
Relative (%) | +14.8 | +10.9 | -30.6 | -17.8 | +42.7 | +45.5 | -13.9 | -39.6 | -34.7 | -2.1 | -44.3 | |
Steps (reduced) |
313 (45) |
322 (54) |
330 (62) |
338 (70) |
346 (78) |
353 (85) |
359 (91) |
365 (97) |
371 (103) |
377 (109) |
382 (114) |