133edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 132edt133edt134edt →
Prime factorization 7 × 19
Step size 14.3004¢ 
Octave 84\133edt (1201.23¢) (→12\19edt)
Consistency limit 10
Distinct consistency limit 10

133 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 133edt or 133ed3), is a nonoctave tuning system that divides the interval of 3/1 into 133 equal parts of about 14.3 ¢ each. Each step represents a frequency ratio of 31/133, or the 133rd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.3
2 28.601
3 42.901 40/39, 41/40, 42/41
4 57.202 30/29, 31/30
5 71.502 25/24
6 85.802 21/20, 41/39
7 100.103 18/17
8 114.403 31/29, 47/44
9 128.704 14/13
10 143.004 25/23, 51/47
11 157.305 23/21
12 171.605 32/29
13 185.905 39/35
14 200.206 46/41
15 214.506 43/38
16 228.807
17 243.107 23/20, 38/33
18 257.407 29/25, 36/31
19 271.708 48/41
20 286.008 46/39
21 300.309 25/21, 44/37
22 314.609 6/5
23 328.91 29/24
24 343.21 39/32, 50/41
25 357.51
26 371.811 31/25
27 386.111 5/4
28 400.412 29/23, 34/27
29 414.712 47/37
30 429.012 32/25, 41/32, 50/39
31 443.313 31/24
32 457.613 43/33
33 471.914 21/16, 46/35
34 486.214 45/34
35 500.514
36 514.815 35/26
37 529.115
38 543.416
39 557.716 29/21, 40/29
40 572.017 32/23, 39/28
41 586.317
42 600.617 41/29
43 614.918
44 629.218 23/16
45 643.519 29/20, 45/31
46 657.819
47 672.119
48 686.42 52/35
49 700.72 3/2
50 715.021
51 729.321 32/21
52 743.622
53 757.922 31/20, 48/31
54 772.222 25/16
55 786.523
56 800.823 27/17
57 815.124 8/5
58 829.424 21/13
59 843.724 44/27
60 858.025 23/14, 41/25
61 872.325 48/29
62 886.626
63 900.926 37/22
64 915.226 39/23
65 929.527
66 943.827 50/29
67 958.128 40/23, 47/27
68 972.428
69 986.729 23/13
70 1001.029 41/23
71 1015.329
72 1029.63 29/16
73 1043.93 42/23
74 1058.231
75 1072.531 13/7
76 1086.831 15/8
77 1101.132 17/9
78 1115.432 40/21
79 1129.733 48/25
80 1144.033 31/16
81 1158.333 41/21
82 1172.634
83 1186.934
84 1201.235 2/1
85 1215.535
86 1229.836
87 1244.136 41/20
88 1258.436 31/15
89 1272.737 48/23
90 1287.037
91 1301.338
92 1315.638 47/22
93 1329.938 28/13
94 1344.239 50/23
95 1358.539 46/21
96 1372.84
97 1387.14
98 1401.441
99 1415.741 34/15, 43/19
100 1430.041 16/7
101 1444.342
102 1458.642
103 1472.943
104 1487.243
105 1501.543 50/21
106 1515.844 12/5
107 1530.144
108 1544.445
109 1558.745 32/13
110 1573.045
111 1587.346 5/2
112 1601.646
113 1615.947
114 1630.247 41/16
115 1644.548 31/12
116 1658.848
117 1673.148
118 1687.449
119 1701.749
120 1716.05 35/13
121 1730.35
122 1744.65
123 1758.951 47/17
124 1773.251 39/14
125 1787.552
126 1801.852 17/6
127 1816.153 20/7
128 1830.453
129 1844.753 29/10
130 1859.054 41/14
131 1873.354
132 1887.655
133 1901.955 3/1

Harmonics

Approximation of harmonics in 133edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 +2.27 +1.23 +6.07 +3.70 +0.00 +3.50 -4.20 +2.47
Relative (%) +8.6 +0.0 +17.3 +15.9 +8.6 +42.5 +25.9 +0.0 +24.5 -29.4 +17.3
Steps
(reduced)
84
(84)
133
(0)
168
(35)
195
(62)
217
(84)
236
(103)
252
(119)
266
(0)
279
(13)
290
(24)
301
(35)
Approximation of harmonics in 133edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.90 -6.99 +2.27 +4.94 +0.09 +1.23 -6.57 +4.74 +6.07 -2.96 +5.88
Relative (%) +48.3 -48.9 +15.9 +34.5 +0.6 +8.6 -45.9 +33.1 +42.5 -20.7 +41.1
Steps
(reduced)
311
(45)
319
(53)
328
(62)
336
(70)
343
(77)
350
(84)
356
(90)
363
(97)
369
(103)
374
(108)
380
(114)