133edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 132edt 133edt 134edt →
Prime factorization 7 × 19
Step size 14.3004¢ 
Octave 84\133edt (1201.23¢) (→12\19edt)
Consistency limit 10
Distinct consistency limit 10

133 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 133edt or 133ed3), is a nonoctave tuning system that divides the interval of 3/1 into 133 equal parts of about 14.3⁠ ⁠¢ each. Each step represents a frequency ratio of 31/133, or the 133rd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 14.3 9.8
2 28.6 19.5
3 42.9 29.3 40/39, 41/40, 42/41
4 57.2 39.1 30/29, 31/30
5 71.5 48.9 25/24
6 85.8 58.6 21/20, 41/39
7 100.1 68.4 18/17
8 114.4 78.2 31/29, 47/44
9 128.7 88 14/13
10 143 97.7 25/23, 51/47
11 157.3 107.5 23/21
12 171.6 117.3 32/29
13 185.9 127.1 39/35
14 200.2 136.8 46/41
15 214.5 146.6 43/38
16 228.8 156.4
17 243.1 166.2 23/20, 38/33
18 257.4 175.9 29/25, 36/31
19 271.7 185.7 48/41
20 286 195.5 46/39
21 300.3 205.3 25/21, 44/37
22 314.6 215 6/5
23 328.9 224.8 29/24
24 343.2 234.6 39/32, 50/41
25 357.5 244.4
26 371.8 254.1 31/25
27 386.1 263.9 5/4
28 400.4 273.7 29/23, 34/27
29 414.7 283.5 47/37
30 429 293.2 32/25, 41/32, 50/39
31 443.3 303 31/24
32 457.6 312.8 43/33
33 471.9 322.6 21/16, 46/35
34 486.2 332.3 45/34
35 500.5 342.1
36 514.8 351.9 35/26
37 529.1 361.7
38 543.4 371.4
39 557.7 381.2 29/21, 40/29
40 572 391 32/23, 39/28
41 586.3 400.8
42 600.6 410.5 41/29
43 614.9 420.3
44 629.2 430.1 23/16
45 643.5 439.8 29/20, 45/31
46 657.8 449.6
47 672.1 459.4
48 686.4 469.2 52/35
49 700.7 478.9 3/2
50 715 488.7
51 729.3 498.5 32/21
52 743.6 508.3
53 757.9 518 31/20, 48/31
54 772.2 527.8 25/16
55 786.5 537.6
56 800.8 547.4 27/17
57 815.1 557.1 8/5
58 829.4 566.9 21/13
59 843.7 576.7 44/27
60 858 586.5 23/14, 41/25
61 872.3 596.2 48/29
62 886.6 606
63 900.9 615.8 37/22
64 915.2 625.6 39/23
65 929.5 635.3
66 943.8 645.1 50/29
67 958.1 654.9 40/23, 47/27
68 972.4 664.7
69 986.7 674.4 23/13
70 1001 684.2 41/23
71 1015.3 694
72 1029.6 703.8 29/16
73 1043.9 713.5 42/23
74 1058.2 723.3
75 1072.5 733.1 13/7
76 1086.8 742.9 15/8
77 1101.1 752.6 17/9
78 1115.4 762.4 40/21
79 1129.7 772.2 48/25
80 1144 782 31/16
81 1158.3 791.7 41/21
82 1172.6 801.5
83 1186.9 811.3
84 1201.2 821.1 2/1
85 1215.5 830.8
86 1229.8 840.6
87 1244.1 850.4 41/20
88 1258.4 860.2 31/15
89 1272.7 869.9 48/23
90 1287 879.7
91 1301.3 889.5
92 1315.6 899.2 47/22
93 1329.9 909 28/13
94 1344.2 918.8 50/23
95 1358.5 928.6 46/21
96 1372.8 938.3
97 1387.1 948.1
98 1401.4 957.9
99 1415.7 967.7 34/15, 43/19
100 1430 977.4 16/7
101 1444.3 987.2
102 1458.6 997
103 1472.9 1006.8
104 1487.2 1016.5
105 1501.5 1026.3 50/21
106 1515.8 1036.1 12/5
107 1530.1 1045.9
108 1544.4 1055.6
109 1558.7 1065.4 32/13
110 1573 1075.2
111 1587.3 1085 5/2
112 1601.6 1094.7
113 1615.9 1104.5
114 1630.2 1114.3 41/16
115 1644.5 1124.1 31/12
116 1658.8 1133.8
117 1673.1 1143.6
118 1687.4 1153.4
119 1701.7 1163.2
120 1716 1172.9 35/13
121 1730.4 1182.7
122 1744.7 1192.5
123 1759 1202.3 47/17
124 1773.3 1212 39/14
125 1787.6 1221.8
126 1801.9 1231.6 17/6
127 1816.2 1241.4 20/7
128 1830.5 1251.1
129 1844.8 1260.9 29/10
130 1859.1 1270.7 41/14
131 1873.4 1280.5
132 1887.7 1290.2
133 1902 1300 3/1

Harmonics

Approximation of harmonics in 133edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 +2.27 +1.23 +6.07 +3.70 +0.00 +3.50 -4.20 +2.47
Relative (%) +8.6 +0.0 +17.3 +15.9 +8.6 +42.5 +25.9 +0.0 +24.5 -29.4 +17.3
Steps
(reduced)
84
(84)
133
(0)
168
(35)
195
(62)
217
(84)
236
(103)
252
(119)
266
(0)
279
(13)
290
(24)
301
(35)
Approximation of harmonics in 133edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +6.90 -6.99 +2.27 +4.94 +0.09 +1.23 -6.57 +4.74 +6.07 -2.96 +5.88
Relative (%) +48.3 -48.9 +15.9 +34.5 +0.6 +8.6 -45.9 +33.1 +42.5 -20.7 +41.1
Steps
(reduced)
311
(45)
319
(53)
328
(62)
336
(70)
343
(77)
350
(84)
356
(90)
363
(97)
369
(103)
374
(108)
380
(114)