132edt
Jump to navigation
Jump to search
Prime factorization
22 × 3 × 11
Step size
14.4088¢
Octave
83\132edt (1195.93¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 131edt | 132edt | 133edt → |
132 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 132edt or 132ed3), is a nonoctave tuning system that divides the interval of 3/1 into 132 equal parts of about 14.4 ¢ each. Each step represents a frequency ratio of 31/132, or the 132nd root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.4 | |
2 | 28.8 | |
3 | 43.2 | 39/38, 42/41 |
4 | 57.6 | |
5 | 72 | 25/24, 49/47 |
6 | 86.5 | 41/39 |
7 | 100.9 | 35/33 |
8 | 115.3 | 31/29, 46/43 |
9 | 129.7 | 14/13 |
10 | 144.1 | 38/35 |
11 | 158.5 | 23/21 |
12 | 172.9 | 21/19 |
13 | 187.3 | 39/35 |
14 | 201.7 | |
15 | 216.1 | 17/15 |
16 | 230.5 | |
17 | 244.9 | 38/33 |
18 | 259.4 | 43/37 |
19 | 273.8 | 41/35 |
20 | 288.2 | 13/11 |
21 | 302.6 | |
22 | 317 | 6/5 |
23 | 331.4 | 23/19 |
24 | 345.8 | 11/9 |
25 | 360.2 | |
26 | 374.6 | 41/33 |
27 | 389 | |
28 | 403.4 | |
29 | 417.9 | 14/11 |
30 | 432.3 | |
31 | 446.7 | 22/17 |
32 | 461.1 | |
33 | 475.5 | |
34 | 489.9 | |
35 | 504.3 | |
36 | 518.7 | |
37 | 533.1 | 34/25 |
38 | 547.5 | |
39 | 561.9 | 18/13 |
40 | 576.4 | 46/33 |
41 | 590.8 | 38/27 |
42 | 605.2 | |
43 | 619.6 | |
44 | 634 | |
45 | 648.4 | |
46 | 662.8 | 22/15 |
47 | 677.2 | |
48 | 691.6 | |
49 | 706 | |
50 | 720.4 | 47/31 |
51 | 734.8 | 26/17 |
52 | 749.3 | |
53 | 763.7 | 14/9 |
54 | 778.1 | |
55 | 792.5 | 49/31 |
56 | 806.9 | 43/27 |
57 | 821.3 | 37/23, 45/28 |
58 | 835.7 | 47/29 |
59 | 850.1 | |
60 | 864.5 | 28/17 |
61 | 878.9 | |
62 | 893.3 | |
63 | 907.8 | 49/29 |
64 | 922.2 | 46/27 |
65 | 936.6 | |
66 | 951 | 26/15, 45/26 |
67 | 965.4 | |
68 | 979.8 | 37/21, 44/25 |
69 | 994.2 | |
70 | 1008.6 | |
71 | 1023 | |
72 | 1037.4 | 51/28 |
73 | 1051.8 | |
74 | 1066.2 | |
75 | 1080.7 | 28/15 |
76 | 1095.1 | |
77 | 1109.5 | |
78 | 1123.9 | |
79 | 1138.3 | 27/14 |
80 | 1152.7 | 35/18, 37/19 |
81 | 1167.1 | 51/26 |
82 | 1181.5 | |
83 | 1195.9 | |
84 | 1210.3 | |
85 | 1224.7 | |
86 | 1239.2 | 43/21, 45/22 |
87 | 1253.6 | |
88 | 1268 | 52/25 |
89 | 1282.4 | |
90 | 1296.8 | |
91 | 1311.2 | |
92 | 1325.6 | |
93 | 1340 | 13/6 |
94 | 1354.4 | |
95 | 1368.8 | |
96 | 1383.2 | |
97 | 1397.6 | |
98 | 1412.1 | |
99 | 1426.5 | 41/18 |
100 | 1440.9 | |
101 | 1455.3 | 51/22 |
102 | 1469.7 | |
103 | 1484.1 | 33/14 |
104 | 1498.5 | |
105 | 1512.9 | |
106 | 1527.3 | |
107 | 1541.7 | |
108 | 1556.1 | 27/11 |
109 | 1570.6 | |
110 | 1585 | 5/2 |
111 | 1599.4 | |
112 | 1613.8 | 33/13 |
113 | 1628.2 | |
114 | 1642.6 | |
115 | 1657 | |
116 | 1671.4 | |
117 | 1685.8 | 45/17 |
118 | 1700.2 | |
119 | 1714.6 | 35/13 |
120 | 1729.1 | 19/7 |
121 | 1743.5 | |
122 | 1757.9 | |
123 | 1772.3 | 39/14 |
124 | 1786.7 | |
125 | 1801.1 | |
126 | 1815.5 | |
127 | 1829.9 | |
128 | 1844.3 | |
129 | 1858.7 | 38/13, 41/14 |
130 | 1873.1 | |
131 | 1887.5 | |
132 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.07 | +0.00 | +6.26 | -5.42 | -4.07 | +2.82 | +2.19 | +0.00 | +4.91 | -1.60 | +6.26 |
Relative (%) | -28.3 | +0.0 | +43.5 | -37.7 | -28.3 | +19.6 | +15.2 | +0.0 | +34.1 | -11.1 | +43.5 | |
Steps (reduced) |
83 (83) |
132 (0) |
167 (35) |
193 (61) |
215 (83) |
234 (102) |
250 (118) |
264 (0) |
277 (13) |
288 (24) |
299 (35) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -1.25 | -5.42 | -1.89 | -5.98 | -4.07 | +3.18 | +0.84 | +2.82 | -5.67 | +3.82 |
Relative (%) | -18.3 | -8.7 | -37.7 | -13.1 | -41.5 | -28.3 | +22.1 | +5.8 | +19.6 | -39.4 | +26.5 | |
Steps (reduced) |
308 (44) |
317 (53) |
325 (61) |
333 (69) |
340 (76) |
347 (83) |
354 (90) |
360 (96) |
366 (102) |
371 (107) |
377 (113) |