132edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 131edt132edt133edt →
Prime factorization 22 × 3 × 11
Step size 14.4088¢ 
Octave 83\132edt (1195.93¢)
Consistency limit 2
Distinct consistency limit 2

132 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 132edt or 132ed3), is a nonoctave tuning system that divides the interval of 3/1 into 132 equal parts of about 14.4 ¢ each. Each step represents a frequency ratio of 31/132, or the 132nd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.409
2 28.818
3 43.226 39/38, 42/41
4 57.635
5 72.044 25/24, 49/47
6 86.453 41/39
7 100.861 35/33
8 115.27 31/29, 46/43
9 129.679 14/13
10 144.088 38/35
11 158.496 23/21
12 172.905 21/19
13 187.314 39/35
14 201.723
15 216.131 17/15
16 230.54
17 244.949 38/33
18 259.358 43/37
19 273.766 41/35
20 288.175 13/11
21 302.584
22 316.993 6/5
23 331.401 23/19
24 345.81 11/9
25 360.219
26 374.628 41/33
27 389.036
28 403.445
29 417.854 14/11
30 432.263
31 446.671 22/17
32 461.08
33 475.489
34 489.898
35 504.306
36 518.715
37 533.124 34/25
38 547.533
39 561.941 18/13
40 576.35 46/33
41 590.759 38/27
42 605.168
43 619.576
44 633.985
45 648.394
46 662.803 22/15
47 677.211
48 691.62
49 706.029
50 720.438 47/31
51 734.846 26/17
52 749.255
53 763.664 14/9
54 778.073
55 792.481 49/31
56 806.89 43/27
57 821.299 37/23, 45/28
58 835.708 47/29
59 850.116
60 864.525 28/17
61 878.934
62 893.343
63 907.751 49/29
64 922.16 46/27
65 936.569
66 950.978 26/15, 45/26
67 965.386
68 979.795 37/21, 44/25
69 994.204
70 1008.613
71 1023.021
72 1037.43 51/28
73 1051.839
74 1066.248
75 1080.656 28/15
76 1095.065
77 1109.474
78 1123.883
79 1138.291 27/14
80 1152.7 35/18, 37/19
81 1167.109 51/26
82 1181.518
83 1195.926
84 1210.335
85 1224.744
86 1239.153 43/21, 45/22
87 1253.561
88 1267.97 52/25
89 1282.379
90 1296.788
91 1311.196
92 1325.605
93 1340.014 13/6
94 1354.423
95 1368.831
96 1383.24
97 1397.649
98 1412.058
99 1426.466 41/18
100 1440.875
101 1455.284 51/22
102 1469.693
103 1484.101 33/14
104 1498.51
105 1512.919
106 1527.328
107 1541.736
108 1556.145 27/11
109 1570.554
110 1584.963 5/2
111 1599.371
112 1613.78 33/13
113 1628.189
114 1642.598
115 1657.006
116 1671.415
117 1685.824 45/17
118 1700.233
119 1714.641 35/13
120 1729.05 19/7
121 1743.459
122 1757.868
123 1772.276 39/14
124 1786.685
125 1801.094
126 1815.503
127 1829.911
128 1844.32
129 1858.729 38/13, 41/14
130 1873.138
131 1887.546
132 1901.955 3/1

Harmonics

Approximation of harmonics in 132edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.07 +0.00 +6.26 -5.42 -4.07 +2.82 +2.19 +0.00 +4.91 -1.60 +6.26
Relative (%) -28.3 +0.0 +43.5 -37.7 -28.3 +19.6 +15.2 +0.0 +34.1 -11.1 +43.5
Steps
(reduced)
83
(83)
132
(0)
167
(35)
193
(61)
215
(83)
234
(102)
250
(118)
264
(0)
277
(13)
288
(24)
299
(35)
Approximation of harmonics in 132edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -1.25 -5.42 -1.89 -5.98 -4.07 +3.18 +0.84 +2.82 -5.67 +3.82
Relative (%) -18.3 -8.7 -37.7 -13.1 -41.5 -28.3 +22.1 +5.8 +19.6 -39.4 +26.5
Steps
(reduced)
308
(44)
317
(53)
325
(61)
333
(69)
340
(76)
347
(83)
354
(90)
360
(96)
366
(102)
371
(107)
377
(113)