147edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 146edt147edt148edt →
Prime factorization 3 × 72
Step size 12.9385¢ 
Octave 93\147edt (1203.28¢) (→31\49edt)
Consistency limit 2
Distinct consistency limit 2

147 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 147edt or 147ed3), is a nonoctave tuning system that divides the interval of 3/1 into 147 equal parts of about 12.9 ¢ each. Each step represents a frequency ratio of 31/147, or the 147th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 12.938
2 25.877
3 38.815
4 51.754 34/33
5 64.692 27/26
6 77.631 23/22, 45/43
7 90.569 39/37
8 103.508
9 116.446
10 129.385 14/13, 55/51
11 142.323 51/47
12 155.262 47/43
13 168.2 43/39
14 181.139 10/9
15 194.077 19/17, 47/42
16 207.016
17 219.954 42/37
18 232.892
19 245.831
20 258.769 43/37
21 271.708 55/47
22 284.646 33/28
23 297.585
24 310.523
25 323.462 41/34, 47/39
26 336.4 17/14
27 349.339
28 362.277 37/30
29 375.216 36/29, 41/33
30 388.154
31 401.093 29/23
32 414.031 33/26, 47/37
33 426.969 55/43
34 439.908
35 452.846 13/10
36 465.785 17/13, 55/42
37 478.723 29/22
38 491.662
39 504.6
40 517.539
41 530.477
42 543.416 26/19
43 556.354 40/29, 51/37
44 569.293
45 582.231 7/5
46 595.17 55/39
47 608.108 27/19
48 621.047
49 633.985
50 646.923
51 659.862 41/28
52 672.8 28/19, 31/21
53 685.739 55/37
54 698.677
55 711.616
56 724.554 41/27
57 737.493
58 750.431
59 763.37 14/9
60 776.308 36/23, 47/30
61 789.247 30/19, 41/26
62 802.185 27/17
63 815.124
64 828.062 50/31
65 841.001
66 853.939 18/11
67 866.877 33/20
68 879.816
69 892.754
70 905.693
71 918.631 17/10
72 931.57
73 944.508
74 957.447 40/23
75 970.385
76 983.324 30/17
77 996.262
78 1009.201
79 1022.139
80 1035.078 20/11
81 1048.016 11/6
82 1060.954
83 1073.893
84 1086.831
85 1099.77 17/9
86 1112.708 19/10
87 1125.647 23/12
88 1138.585 27/14, 56/29
89 1151.524
90 1164.462 49/25
91 1177.401
92 1190.339
93 1203.278
94 1216.216
95 1229.155
96 1242.093 41/20, 43/21
97 1255.032
98 1267.97
99 1280.908
100 1293.847 19/9
101 1306.785
102 1319.724 15/7
103 1332.662 41/19
104 1345.601 37/17
105 1358.539
106 1371.478
107 1384.416
108 1397.355
109 1410.293
110 1423.232
111 1436.17 39/17
112 1449.109 30/13
113 1462.047
114 1474.986
115 1487.924 26/11
116 1500.862 50/21
117 1513.801
118 1526.739 29/12
119 1539.678 56/23
120 1552.616
121 1565.555 42/17
122 1578.493
123 1591.432
124 1604.37
125 1617.309 28/11
126 1630.247
127 1643.186
128 1656.124
129 1669.063
130 1682.001 37/14
131 1694.939
132 1707.878 51/19
133 1720.816 27/10
134 1733.755
135 1746.693
136 1759.632 47/17
137 1772.57 39/14
138 1785.509
139 1798.447
140 1811.386 37/13
141 1824.324 43/15
142 1837.263 26/9
143 1850.201
144 1863.14
145 1876.078
146 1889.017
147 1901.955 3/1

Harmonics

Approximation of harmonics in 147edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.28 +0.00 -6.38 -4.54 +3.28 -4.82 -3.11 +0.00 -1.27 +1.93 -6.38
Relative (%) +25.3 +0.0 -49.3 -35.1 +25.3 -37.3 -24.0 +0.0 -9.8 +14.9 -49.3
Steps
(reduced)
93
(93)
147
(0)
185
(38)
215
(68)
240
(93)
260
(113)
278
(131)
294
(0)
308
(14)
321
(27)
332
(38)
Approximation of harmonics in 147edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -1.55 -4.54 +0.17 -1.28 +3.28 +0.24 +2.01 -4.82 +5.21 +5.88
Relative (%) -20.3 -12.0 -35.1 +1.3 -9.9 +25.3 +1.9 +15.6 -37.3 +40.3 +45.5
Steps
(reduced)
343
(49)
353
(59)
362
(68)
371
(77)
379
(85)
387
(93)
394
(100)
401
(107)
407
(113)
414
(120)
420
(126)