147edt
Jump to navigation
Jump to search
Prime factorization
3 × 72
Step size
12.9385¢
Octave
93\147edt (1203.28¢) (→31\49edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 146edt | 147edt | 148edt → |
147 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 147edt or 147ed3), is a nonoctave tuning system that divides the interval of 3/1 into 147 equal parts of about 12.9 ¢ each. Each step represents a frequency ratio of 31/147, or the 147th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 12.9 | 8.8 | |
2 | 25.9 | 17.7 | |
3 | 38.8 | 26.5 | |
4 | 51.8 | 35.4 | 34/33 |
5 | 64.7 | 44.2 | 27/26 |
6 | 77.6 | 53.1 | 23/22, 45/43 |
7 | 90.6 | 61.9 | 39/37 |
8 | 103.5 | 70.7 | |
9 | 116.4 | 79.6 | |
10 | 129.4 | 88.4 | 14/13, 55/51 |
11 | 142.3 | 97.3 | 51/47 |
12 | 155.3 | 106.1 | 47/43 |
13 | 168.2 | 115 | 43/39 |
14 | 181.1 | 123.8 | 10/9 |
15 | 194.1 | 132.7 | 19/17, 47/42 |
16 | 207 | 141.5 | |
17 | 220 | 150.3 | 42/37 |
18 | 232.9 | 159.2 | |
19 | 245.8 | 168 | |
20 | 258.8 | 176.9 | 43/37 |
21 | 271.7 | 185.7 | 55/47 |
22 | 284.6 | 194.6 | 33/28 |
23 | 297.6 | 203.4 | |
24 | 310.5 | 212.2 | |
25 | 323.5 | 221.1 | 41/34, 47/39 |
26 | 336.4 | 229.9 | 17/14 |
27 | 349.3 | 238.8 | |
28 | 362.3 | 247.6 | 37/30 |
29 | 375.2 | 256.5 | 36/29, 41/33 |
30 | 388.2 | 265.3 | |
31 | 401.1 | 274.1 | 29/23 |
32 | 414 | 283 | 33/26, 47/37 |
33 | 427 | 291.8 | 55/43 |
34 | 439.9 | 300.7 | |
35 | 452.8 | 309.5 | 13/10 |
36 | 465.8 | 318.4 | 17/13, 55/42 |
37 | 478.7 | 327.2 | 29/22 |
38 | 491.7 | 336.1 | |
39 | 504.6 | 344.9 | |
40 | 517.5 | 353.7 | |
41 | 530.5 | 362.6 | |
42 | 543.4 | 371.4 | 26/19 |
43 | 556.4 | 380.3 | 40/29, 51/37 |
44 | 569.3 | 389.1 | |
45 | 582.2 | 398 | 7/5 |
46 | 595.2 | 406.8 | 55/39 |
47 | 608.1 | 415.6 | 27/19 |
48 | 621 | 424.5 | |
49 | 634 | 433.3 | |
50 | 646.9 | 442.2 | |
51 | 659.9 | 451 | 41/28 |
52 | 672.8 | 459.9 | 28/19, 31/21 |
53 | 685.7 | 468.7 | 55/37 |
54 | 698.7 | 477.6 | |
55 | 711.6 | 486.4 | |
56 | 724.6 | 495.2 | 41/27 |
57 | 737.5 | 504.1 | |
58 | 750.4 | 512.9 | |
59 | 763.4 | 521.8 | 14/9 |
60 | 776.3 | 530.6 | 36/23, 47/30 |
61 | 789.2 | 539.5 | 30/19, 41/26 |
62 | 802.2 | 548.3 | 27/17 |
63 | 815.1 | 557.1 | |
64 | 828.1 | 566 | 50/31 |
65 | 841 | 574.8 | |
66 | 853.9 | 583.7 | 18/11 |
67 | 866.9 | 592.5 | 33/20 |
68 | 879.8 | 601.4 | |
69 | 892.8 | 610.2 | |
70 | 905.7 | 619 | |
71 | 918.6 | 627.9 | 17/10 |
72 | 931.6 | 636.7 | |
73 | 944.5 | 645.6 | |
74 | 957.4 | 654.4 | 40/23 |
75 | 970.4 | 663.3 | |
76 | 983.3 | 672.1 | 30/17 |
77 | 996.3 | 681 | |
78 | 1009.2 | 689.8 | |
79 | 1022.1 | 698.6 | |
80 | 1035.1 | 707.5 | 20/11 |
81 | 1048 | 716.3 | 11/6 |
82 | 1061 | 725.2 | |
83 | 1073.9 | 734 | |
84 | 1086.8 | 742.9 | |
85 | 1099.8 | 751.7 | 17/9 |
86 | 1112.7 | 760.5 | 19/10 |
87 | 1125.6 | 769.4 | 23/12 |
88 | 1138.6 | 778.2 | 27/14, 56/29 |
89 | 1151.5 | 787.1 | |
90 | 1164.5 | 795.9 | 49/25 |
91 | 1177.4 | 804.8 | |
92 | 1190.3 | 813.6 | |
93 | 1203.3 | 822.4 | |
94 | 1216.2 | 831.3 | |
95 | 1229.2 | 840.1 | |
96 | 1242.1 | 849 | 41/20, 43/21 |
97 | 1255 | 857.8 | |
98 | 1268 | 866.7 | |
99 | 1280.9 | 875.5 | |
100 | 1293.8 | 884.4 | 19/9 |
101 | 1306.8 | 893.2 | |
102 | 1319.7 | 902 | 15/7 |
103 | 1332.7 | 910.9 | 41/19 |
104 | 1345.6 | 919.7 | 37/17 |
105 | 1358.5 | 928.6 | |
106 | 1371.5 | 937.4 | |
107 | 1384.4 | 946.3 | |
108 | 1397.4 | 955.1 | |
109 | 1410.3 | 963.9 | |
110 | 1423.2 | 972.8 | |
111 | 1436.2 | 981.6 | 39/17 |
112 | 1449.1 | 990.5 | 30/13 |
113 | 1462 | 999.3 | |
114 | 1475 | 1008.2 | |
115 | 1487.9 | 1017 | 26/11 |
116 | 1500.9 | 1025.9 | 50/21 |
117 | 1513.8 | 1034.7 | |
118 | 1526.7 | 1043.5 | 29/12 |
119 | 1539.7 | 1052.4 | 56/23 |
120 | 1552.6 | 1061.2 | |
121 | 1565.6 | 1070.1 | 42/17 |
122 | 1578.5 | 1078.9 | |
123 | 1591.4 | 1087.8 | |
124 | 1604.4 | 1096.6 | |
125 | 1617.3 | 1105.4 | 28/11 |
126 | 1630.2 | 1114.3 | |
127 | 1643.2 | 1123.1 | |
128 | 1656.1 | 1132 | |
129 | 1669.1 | 1140.8 | |
130 | 1682 | 1149.7 | 37/14 |
131 | 1694.9 | 1158.5 | |
132 | 1707.9 | 1167.3 | 51/19 |
133 | 1720.8 | 1176.2 | 27/10 |
134 | 1733.8 | 1185 | |
135 | 1746.7 | 1193.9 | |
136 | 1759.6 | 1202.7 | 47/17 |
137 | 1772.6 | 1211.6 | 39/14 |
138 | 1785.5 | 1220.4 | |
139 | 1798.4 | 1229.3 | |
140 | 1811.4 | 1238.1 | 37/13 |
141 | 1824.3 | 1246.9 | 43/15 |
142 | 1837.3 | 1255.8 | 26/9 |
143 | 1850.2 | 1264.6 | |
144 | 1863.1 | 1273.5 | |
145 | 1876.1 | 1282.3 | |
146 | 1889 | 1291.2 | |
147 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.28 | +0.00 | -6.38 | -4.54 | +3.28 | -4.82 | -3.11 | +0.00 | -1.27 | +1.93 | -6.38 |
Relative (%) | +25.3 | +0.0 | -49.3 | -35.1 | +25.3 | -37.3 | -24.0 | +0.0 | -9.8 | +14.9 | -49.3 | |
Steps (reduced) |
93 (93) |
147 (0) |
185 (38) |
215 (68) |
240 (93) |
260 (113) |
278 (131) |
294 (0) |
308 (14) |
321 (27) |
332 (38) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -1.55 | -4.54 | +0.17 | -1.28 | +3.28 | +0.24 | +2.01 | -4.82 | +5.21 | +5.88 |
Relative (%) | -20.3 | -12.0 | -35.1 | +1.3 | -9.9 | +25.3 | +1.9 | +15.6 | -37.3 | +40.3 | +45.5 | |
Steps (reduced) |
343 (49) |
353 (59) |
362 (68) |
371 (77) |
379 (85) |
387 (93) |
394 (100) |
401 (107) |
407 (113) |
414 (120) |
420 (126) |