148edt
Jump to navigation
Jump to search
Prime factorization
22 × 37
Step size
12.851¢
Octave
93\148edt (1195.15¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 147edt | 148edt | 149edt → |
148 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 148edt or 148ed3), is a nonoctave tuning system that divides the interval of 3/1 into 148 equal parts of about 12.9 ¢ each. Each step represents a frequency ratio of 31/148, or the 148th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 12.9 | 8.8 | |
2 | 25.7 | 17.6 | |
3 | 38.6 | 26.4 | |
4 | 51.4 | 35.1 | 34/33, 35/34 |
5 | 64.3 | 43.9 | 27/26 |
6 | 77.1 | 52.7 | 23/22 |
7 | 90 | 61.5 | |
8 | 102.8 | 70.3 | 35/33, 52/49 |
9 | 115.7 | 79.1 | 31/29 |
10 | 128.5 | 87.8 | |
11 | 141.4 | 96.6 | 38/35, 51/47 |
12 | 154.2 | 105.4 | 47/43 |
13 | 167.1 | 114.2 | 54/49 |
14 | 179.9 | 123 | |
15 | 192.8 | 131.8 | 19/17 |
16 | 205.6 | 140.5 | |
17 | 218.5 | 149.3 | 42/37 |
18 | 231.3 | 158.1 | |
19 | 244.2 | 166.9 | 38/33 |
20 | 257 | 175.7 | 29/25 |
21 | 269.9 | 184.5 | |
22 | 282.7 | 193.2 | |
23 | 295.6 | 202 | 51/43 |
24 | 308.4 | 210.8 | 49/41 |
25 | 321.3 | 219.6 | |
26 | 334.1 | 228.4 | 57/47 |
27 | 347 | 237.2 | 11/9 |
28 | 359.8 | 245.9 | |
29 | 372.7 | 254.7 | 31/25 |
30 | 385.5 | 263.5 | |
31 | 398.4 | 272.3 | 34/27, 39/31 |
32 | 411.2 | 281.1 | 33/26, 52/41 |
33 | 424.1 | 289.9 | 23/18 |
34 | 436.9 | 298.6 | |
35 | 449.8 | 307.4 | 35/27 |
36 | 462.6 | 316.2 | |
37 | 475.5 | 325 | 25/19, 54/41 |
38 | 488.3 | 333.8 | 57/43 |
39 | 501.2 | 342.6 | |
40 | 514 | 351.4 | 35/26, 39/29 |
41 | 526.9 | 360.1 | |
42 | 539.7 | 368.9 | 41/30 |
43 | 552.6 | 377.7 | |
44 | 565.4 | 386.5 | 43/31 |
45 | 578.3 | 395.3 | |
46 | 591.1 | 404.1 | 38/27 |
47 | 604 | 412.8 | |
48 | 616.9 | 421.6 | 10/7 |
49 | 629.7 | 430.4 | |
50 | 642.6 | 439.2 | |
51 | 655.4 | 448 | 54/37 |
52 | 668.3 | 456.8 | 25/17 |
53 | 681.1 | 465.5 | 43/29 |
54 | 694 | 474.3 | |
55 | 706.8 | 483.1 | |
56 | 719.7 | 491.9 | 47/31, 50/33 |
57 | 732.5 | 500.7 | 29/19 |
58 | 745.4 | 509.5 | |
59 | 758.2 | 518.2 | |
60 | 771.1 | 527 | 39/25 |
61 | 783.9 | 535.8 | 11/7 |
62 | 796.8 | 544.6 | |
63 | 809.6 | 553.4 | |
64 | 822.5 | 562.2 | 37/23 |
65 | 835.3 | 570.9 | 34/21, 47/29 |
66 | 848.2 | 579.7 | 31/19, 49/30 |
67 | 861 | 588.5 | 51/31 |
68 | 873.9 | 597.3 | |
69 | 886.7 | 606.1 | |
70 | 899.6 | 614.9 | 37/22 |
71 | 912.4 | 623.6 | |
72 | 925.3 | 632.4 | 29/17 |
73 | 938.1 | 641.2 | 43/25 |
74 | 951 | 650 | 26/15, 45/26 |
75 | 963.8 | 658.8 | |
76 | 976.7 | 667.6 | 51/29 |
77 | 989.5 | 676.4 | |
78 | 1002.4 | 685.1 | |
79 | 1015.2 | 693.9 | |
80 | 1028.1 | 702.7 | 38/21 |
81 | 1040.9 | 711.5 | 31/17 |
82 | 1053.8 | 720.3 | 57/31 |
83 | 1066.6 | 729.1 | 50/27 |
84 | 1079.5 | 737.8 | |
85 | 1092.3 | 746.6 | 47/25 |
86 | 1105.2 | 755.4 | |
87 | 1118 | 764.2 | 21/11 |
88 | 1130.9 | 773 | 25/13 |
89 | 1143.7 | 781.8 | |
90 | 1156.6 | 790.5 | |
91 | 1169.4 | 799.3 | 57/29 |
92 | 1182.3 | 808.1 | |
93 | 1195.1 | 816.9 | |
94 | 1208 | 825.7 | |
95 | 1220.8 | 834.5 | |
96 | 1233.7 | 843.2 | 51/25 |
97 | 1246.6 | 852 | 37/18 |
98 | 1259.4 | 860.8 | |
99 | 1272.3 | 869.6 | |
100 | 1285.1 | 878.4 | 21/10 |
101 | 1298 | 887.2 | 55/26 |
102 | 1310.8 | 895.9 | 49/23 |
103 | 1323.7 | 904.7 | |
104 | 1336.5 | 913.5 | |
105 | 1349.4 | 922.3 | |
106 | 1362.2 | 931.1 | |
107 | 1375.1 | 939.9 | |
108 | 1387.9 | 948.6 | 29/13 |
109 | 1400.8 | 957.4 | |
110 | 1413.6 | 966.2 | 43/19, 52/23 |
111 | 1426.5 | 975 | 41/18, 57/25 |
112 | 1439.3 | 983.8 | |
113 | 1452.2 | 992.6 | |
114 | 1465 | 1001.4 | |
115 | 1477.9 | 1010.1 | 54/23 |
116 | 1490.7 | 1018.9 | 26/11 |
117 | 1503.6 | 1027.7 | 31/13 |
118 | 1516.4 | 1036.5 | |
119 | 1529.3 | 1045.3 | |
120 | 1542.1 | 1054.1 | |
121 | 1555 | 1062.8 | 27/11 |
122 | 1567.8 | 1071.6 | 47/19 |
123 | 1580.7 | 1080.4 | |
124 | 1593.5 | 1089.2 | |
125 | 1606.4 | 1098 | 43/17 |
126 | 1619.2 | 1106.8 | |
127 | 1632.1 | 1115.5 | |
128 | 1644.9 | 1124.3 | |
129 | 1657.8 | 1133.1 | |
130 | 1670.6 | 1141.9 | |
131 | 1683.5 | 1150.7 | 37/14 |
132 | 1696.3 | 1159.5 | |
133 | 1709.2 | 1168.2 | 51/19 |
134 | 1722 | 1177 | |
135 | 1734.9 | 1185.8 | 49/18 |
136 | 1747.7 | 1194.6 | |
137 | 1760.6 | 1203.4 | 47/17 |
138 | 1773.4 | 1212.2 | |
139 | 1786.3 | 1220.9 | |
140 | 1799.1 | 1229.7 | |
141 | 1812 | 1238.5 | |
142 | 1824.8 | 1247.3 | |
143 | 1837.7 | 1256.1 | 26/9 |
144 | 1850.6 | 1264.9 | |
145 | 1863.4 | 1273.6 | |
146 | 1876.3 | 1282.4 | |
147 | 1889.1 | 1291.2 | |
148 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.85 | +0.00 | +3.15 | +2.36 | -4.85 | -1.85 | -1.71 | +0.00 | -2.49 | -0.43 | +3.15 |
Relative (%) | -37.8 | +0.0 | +24.5 | +18.4 | -37.8 | -14.4 | -13.3 | +0.0 | -19.4 | -3.3 | +24.5 | |
Steps (reduced) |
93 (93) |
148 (0) |
187 (39) |
217 (69) |
241 (93) |
262 (114) |
280 (132) |
296 (0) |
310 (14) |
323 (27) |
335 (39) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +5.93 | +6.15 | +2.36 | +6.29 | +4.14 | -4.85 | +4.35 | +5.51 | -1.85 | -5.28 | -5.13 |
Relative (%) | +46.2 | +47.8 | +18.4 | +49.0 | +32.3 | -37.8 | +33.9 | +42.9 | -14.4 | -41.1 | -39.9 | |
Steps (reduced) |
346 (50) |
356 (60) |
365 (69) |
374 (78) |
382 (86) |
389 (93) |
397 (101) |
404 (108) |
410 (114) |
416 (120) |
422 (126) |