148edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 147edt148edt149edt →
Prime factorization 22 × 37
Step size 12.851¢ 
Octave 93\148edt (1195.15¢)
Consistency limit 2
Distinct consistency limit 2

148 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 148edt or 148ed3), is a nonoctave tuning system that divides the interval of 3/1 into 148 equal parts of about 12.9 ¢ each. Each step represents a frequency ratio of 31/148, or the 148th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 12.851
2 25.702
3 38.553
4 51.404 34/33, 35/34
5 64.255 27/26
6 77.106 23/22
7 89.957
8 102.808 35/33, 52/49
9 115.659 31/29
10 128.51
11 141.362 38/35, 51/47
12 154.213 47/43
13 167.064 54/49
14 179.915
15 192.766 19/17
16 205.617
17 218.468 42/37
18 231.319
19 244.17 38/33
20 257.021 29/25
21 269.872
22 282.723
23 295.574 51/43
24 308.425 49/41
25 321.276
26 334.127 57/47
27 346.978 11/9
28 359.829
29 372.68 31/25
30 385.531
31 398.382 34/27, 39/31
32 411.234 33/26, 52/41
33 424.085 23/18
34 436.936
35 449.787 35/27
36 462.638
37 475.489 25/19, 54/41
38 488.34 57/43
39 501.191
40 514.042 35/26, 39/29
41 526.893
42 539.744 41/30
43 552.595
44 565.446 43/31
45 578.297
46 591.148 38/27
47 603.999
48 616.85 10/7
49 629.701
50 642.552
51 655.403 54/37
52 668.254 25/17
53 681.106 43/29
54 693.957
55 706.808
56 719.659 47/31, 50/33
57 732.51 29/19
58 745.361
59 758.212
60 771.063 39/25
61 783.914 11/7
62 796.765
63 809.616
64 822.467 37/23
65 835.318 34/21, 47/29
66 848.169 31/19, 49/30
67 861.02 51/31
68 873.871
69 886.722
70 899.573 37/22
71 912.424
72 925.275 29/17
73 938.126 43/25
74 950.978 26/15, 45/26
75 963.829
76 976.68 51/29
77 989.531
78 1002.382
79 1015.233
80 1028.084 38/21
81 1040.935 31/17
82 1053.786 57/31
83 1066.637 50/27
84 1079.488
85 1092.339 47/25
86 1105.19
87 1118.041 21/11
88 1130.892 25/13
89 1143.743
90 1156.594
91 1169.445 57/29
92 1182.296
93 1195.147
94 1207.998
95 1220.849
96 1233.701 51/25
97 1246.552 37/18
98 1259.403
99 1272.254
100 1285.105 21/10
101 1297.956 55/26
102 1310.807 49/23
103 1323.658
104 1336.509
105 1349.36
106 1362.211
107 1375.062
108 1387.913 29/13
109 1400.764
110 1413.615 43/19, 52/23
111 1426.466 41/18, 57/25
112 1439.317
113 1452.168
114 1465.019
115 1477.87 54/23
116 1490.721 26/11
117 1503.573 31/13
118 1516.424
119 1529.275
120 1542.126
121 1554.977 27/11
122 1567.828 47/19
123 1580.679
124 1593.53
125 1606.381 43/17
126 1619.232
127 1632.083
128 1644.934
129 1657.785
130 1670.636
131 1683.487 37/14
132 1696.338
133 1709.189 51/19
134 1722.04
135 1734.891 49/18
136 1747.742
137 1760.593 47/17
138 1773.445
139 1786.296
140 1799.147
141 1811.998
142 1824.849
143 1837.7 26/9
144 1850.551
145 1863.402
146 1876.253
147 1889.104
148 1901.955 3/1

Harmonics

Approximation of harmonics in 148edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -4.85 +0.00 +3.15 +2.36 -4.85 -1.85 -1.71 +0.00 -2.49 -0.43 +3.15
Relative (%) -37.8 +0.0 +24.5 +18.4 -37.8 -14.4 -13.3 +0.0 -19.4 -3.3 +24.5
Steps
(reduced)
93
(93)
148
(0)
187
(39)
217
(69)
241
(93)
262
(114)
280
(132)
296
(0)
310
(14)
323
(27)
335
(39)
Approximation of harmonics in 148edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +5.93 +6.15 +2.36 +6.29 +4.14 -4.85 +4.35 +5.51 -1.85 -5.28 -5.13
Relative (%) +46.2 +47.8 +18.4 +49.0 +32.3 -37.8 +33.9 +42.9 -14.4 -41.1 -39.9
Steps
(reduced)
346
(50)
356
(60)
365
(69)
374
(78)
382
(86)
389
(93)
397
(101)
404
(108)
410
(114)
416
(120)
422
(126)