149edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 148edt149edt150edt →
Prime factorization 149 (prime)
Step size 12.7648¢ 
Octave 94\149edt (1199.89¢)
(semiconvergent)
Consistency limit 23
Distinct consistency limit 14

149 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 149edt or 149ed3), is a nonoctave tuning system that divides the interval of 3/1 into 149 equal parts of about 12.8 ¢ each. Each step represents a frequency ratio of 31/149, or the 149th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 12.765
2 25.53
3 38.294 44/43, 45/44, 46/45, 47/46
4 51.059 34/33, 35/34
5 63.824 27/26, 28/27
6 76.589 23/22, 47/45
7 89.354 20/19
8 102.118 35/33, 52/49
9 114.883 31/29, 47/44
10 127.648 14/13
11 140.413 51/47
12 153.178 47/43
13 165.942 11/10
14 178.707 41/37, 51/46
15 191.472 19/17, 48/43
16 204.237 9/8
17 217.002 17/15
18 229.766 8/7
19 242.531 23/20
20 255.296 22/19, 51/44
21 268.061 7/6
22 280.826 20/17
23 293.59 32/27, 45/38
24 306.355 37/31, 43/36
25 319.12
26 331.885 23/19, 40/33
27 344.65
28 357.414 43/35
29 370.179 26/21, 57/46
30 382.944
31 395.709 44/35, 49/39, 54/43
32 408.474 19/15
33 421.238 37/29, 51/40
34 434.003 9/7
35 446.768 22/17, 57/44
36 459.533 30/23, 43/33
37 472.298 21/16, 46/35
38 485.062 41/31, 45/34, 49/37
39 497.827 4/3
40 510.592 43/32, 47/35, 51/38
41 523.357 23/17
42 536.122 15/11
43 548.886
44 561.651 47/34
45 574.416 39/28, 46/33
46 587.181
47 599.946 41/29
48 612.71 47/33, 57/40
49 625.475 33/23, 56/39
50 638.24
51 651.005 51/35
52 663.77 22/15
53 676.534 34/23
54 689.299
55 702.064 3/2
56 714.829
57 727.594 35/23
58 740.358 23/15
59 753.123 17/11
60 765.888 14/9
61 778.653 47/30
62 791.418 30/19, 49/31
63 804.182 35/22, 43/27
64 816.947
65 829.712 21/13
66 842.477
67 855.242
68 868.006 33/20, 38/23
69 880.771
70 893.536 57/34
71 906.301 27/16
72 919.066 17/10
73 931.83 12/7
74 944.595
75 957.36 40/23
76 970.125 7/4
77 982.889 30/17
78 995.654 16/9
79 1008.419 34/19, 43/24
80 1021.184
81 1033.949 20/11
82 1046.713
83 1059.478
84 1072.243 13/7
85 1085.008
86 1097.773 49/26
87 1110.537 19/10
88 1123.302 44/23
89 1136.067 27/14, 52/27
90 1148.832 33/17
91 1161.597 43/22, 45/23
92 1174.361
93 1187.126
94 1199.891 2/1
95 1212.656
96 1225.421
97 1238.185 45/22, 47/23
98 1250.95 35/17
99 1263.715 56/27
100 1276.48 23/11
101 1289.245 40/19
102 1302.009
103 1314.774 47/22
104 1327.539 28/13
105 1340.304
106 1353.069
107 1365.833 11/5
108 1378.598 51/23
109 1391.363 38/17
110 1404.128 9/4
111 1416.893 34/15
112 1429.657 16/7
113 1442.422 23/10
114 1455.187 44/19, 51/22
115 1467.952 7/3
116 1480.717 40/17, 47/20
117 1493.481 45/19
118 1506.246 43/18
119 1519.011
120 1531.776 46/19
121 1544.541
122 1557.305
123 1570.07 52/21, 57/23
124 1582.835
125 1595.6
126 1608.365 38/15
127 1621.129 51/20
128 1633.894 18/7
129 1646.659 44/17, 57/22
130 1659.424
131 1672.189 21/8
132 1684.953 45/17
133 1697.718 8/3
134 1710.483 43/16, 51/19
135 1723.248 46/17
136 1736.013 30/11
137 1748.777
138 1761.542 47/17
139 1774.307 39/14
140 1787.072
141 1799.837
142 1812.601 57/20
143 1825.366
144 1838.131 26/9
145 1850.896
146 1863.661 44/15
147 1876.425
148 1889.19
149 1901.955 3/1

Harmonics

Approximation of harmonics in 149edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.11 +0.00 -0.22 -3.59 -0.11 +1.08 -0.33 +0.00 -3.70 -2.76 -0.22
Relative (%) -0.9 +0.0 -1.7 -28.1 -0.9 +8.5 -2.6 +0.0 -29.0 -21.6 -1.7
Steps
(reduced)
94
(94)
149
(0)
188
(39)
218
(69)
243
(94)
264
(115)
282
(133)
298
(0)
312
(14)
325
(27)
337
(39)
Approximation of harmonics in 149edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +1.62 +0.97 -3.59 -0.44 -3.27 -0.11 -4.36 -3.81 +1.08 -2.87 -3.23
Relative (%) +12.7 +7.6 -28.1 -3.4 -25.6 -0.9 -34.1 -29.8 +8.5 -22.5 -25.3
Steps
(reduced)
348
(50)
358
(60)
367
(69)
376
(78)
384
(86)
392
(94)
399
(101)
406
(108)
413
(115)
419
(121)
425
(127)