149edt
Jump to navigation
Jump to search
Prime factorization
149 (prime)
Step size
12.7648¢
Octave
94\149edt (1199.89¢)
(semiconvergent)
Consistency limit
23
Distinct consistency limit
14
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 148edt | 149edt | 150edt → |
(semiconvergent)
149 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 149edt or 149ed3), is a nonoctave tuning system that divides the interval of 3/1 into 149 equal parts of about 12.8 ¢ each. Each step represents a frequency ratio of 31/149, or the 149th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 12.8 | 8.7 | |
2 | 25.5 | 17.4 | |
3 | 38.3 | 26.2 | 44/43, 45/44, 46/45, 47/46 |
4 | 51.1 | 34.9 | 34/33, 35/34 |
5 | 63.8 | 43.6 | 27/26, 28/27 |
6 | 76.6 | 52.3 | 23/22, 47/45 |
7 | 89.4 | 61.1 | 20/19 |
8 | 102.1 | 69.8 | 35/33, 52/49 |
9 | 114.9 | 78.5 | 31/29, 47/44 |
10 | 127.6 | 87.2 | 14/13 |
11 | 140.4 | 96 | 51/47 |
12 | 153.2 | 104.7 | 47/43 |
13 | 165.9 | 113.4 | 11/10 |
14 | 178.7 | 122.1 | 41/37, 51/46 |
15 | 191.5 | 130.9 | 19/17, 48/43 |
16 | 204.2 | 139.6 | 9/8 |
17 | 217 | 148.3 | 17/15 |
18 | 229.8 | 157 | 8/7 |
19 | 242.5 | 165.8 | 23/20 |
20 | 255.3 | 174.5 | 22/19, 51/44 |
21 | 268.1 | 183.2 | 7/6 |
22 | 280.8 | 191.9 | 20/17 |
23 | 293.6 | 200.7 | 32/27, 45/38 |
24 | 306.4 | 209.4 | 37/31, 43/36 |
25 | 319.1 | 218.1 | |
26 | 331.9 | 226.8 | 23/19, 40/33 |
27 | 344.6 | 235.6 | |
28 | 357.4 | 244.3 | 43/35 |
29 | 370.2 | 253 | 26/21, 57/46 |
30 | 382.9 | 261.7 | |
31 | 395.7 | 270.5 | 44/35, 49/39, 54/43 |
32 | 408.5 | 279.2 | 19/15 |
33 | 421.2 | 287.9 | 37/29, 51/40 |
34 | 434 | 296.6 | 9/7 |
35 | 446.8 | 305.4 | 22/17, 57/44 |
36 | 459.5 | 314.1 | 30/23, 43/33 |
37 | 472.3 | 322.8 | 21/16, 46/35 |
38 | 485.1 | 331.5 | 41/31, 45/34, 49/37 |
39 | 497.8 | 340.3 | 4/3 |
40 | 510.6 | 349 | 43/32, 47/35, 51/38 |
41 | 523.4 | 357.7 | 23/17 |
42 | 536.1 | 366.4 | 15/11 |
43 | 548.9 | 375.2 | |
44 | 561.7 | 383.9 | 47/34 |
45 | 574.4 | 392.6 | 39/28, 46/33 |
46 | 587.2 | 401.3 | |
47 | 599.9 | 410.1 | 41/29 |
48 | 612.7 | 418.8 | 47/33, 57/40 |
49 | 625.5 | 427.5 | 33/23, 56/39 |
50 | 638.2 | 436.2 | |
51 | 651 | 445 | 51/35 |
52 | 663.8 | 453.7 | 22/15 |
53 | 676.5 | 462.4 | 34/23 |
54 | 689.3 | 471.1 | |
55 | 702.1 | 479.9 | 3/2 |
56 | 714.8 | 488.6 | |
57 | 727.6 | 497.3 | 35/23 |
58 | 740.4 | 506 | 23/15 |
59 | 753.1 | 514.8 | 17/11 |
60 | 765.9 | 523.5 | 14/9 |
61 | 778.7 | 532.2 | 47/30 |
62 | 791.4 | 540.9 | 30/19, 49/31 |
63 | 804.2 | 549.7 | 35/22, 43/27 |
64 | 816.9 | 558.4 | |
65 | 829.7 | 567.1 | 21/13 |
66 | 842.5 | 575.8 | |
67 | 855.2 | 584.6 | |
68 | 868 | 593.3 | 33/20, 38/23 |
69 | 880.8 | 602 | |
70 | 893.5 | 610.7 | 57/34 |
71 | 906.3 | 619.5 | 27/16 |
72 | 919.1 | 628.2 | 17/10 |
73 | 931.8 | 636.9 | 12/7 |
74 | 944.6 | 645.6 | |
75 | 957.4 | 654.4 | 40/23 |
76 | 970.1 | 663.1 | 7/4 |
77 | 982.9 | 671.8 | 30/17 |
78 | 995.7 | 680.5 | 16/9 |
79 | 1008.4 | 689.3 | 34/19, 43/24 |
80 | 1021.2 | 698 | |
81 | 1033.9 | 706.7 | 20/11 |
82 | 1046.7 | 715.4 | |
83 | 1059.5 | 724.2 | |
84 | 1072.2 | 732.9 | 13/7 |
85 | 1085 | 741.6 | |
86 | 1097.8 | 750.3 | 49/26 |
87 | 1110.5 | 759.1 | 19/10 |
88 | 1123.3 | 767.8 | 44/23 |
89 | 1136.1 | 776.5 | 27/14, 52/27 |
90 | 1148.8 | 785.2 | 33/17 |
91 | 1161.6 | 794 | 43/22, 45/23 |
92 | 1174.4 | 802.7 | |
93 | 1187.1 | 811.4 | |
94 | 1199.9 | 820.1 | 2/1 |
95 | 1212.7 | 828.9 | |
96 | 1225.4 | 837.6 | |
97 | 1238.2 | 846.3 | 45/22, 47/23 |
98 | 1251 | 855 | 35/17 |
99 | 1263.7 | 863.8 | 56/27 |
100 | 1276.5 | 872.5 | 23/11 |
101 | 1289.2 | 881.2 | 40/19 |
102 | 1302 | 889.9 | |
103 | 1314.8 | 898.7 | 47/22 |
104 | 1327.5 | 907.4 | 28/13 |
105 | 1340.3 | 916.1 | |
106 | 1353.1 | 924.8 | |
107 | 1365.8 | 933.6 | 11/5 |
108 | 1378.6 | 942.3 | 51/23 |
109 | 1391.4 | 951 | 38/17 |
110 | 1404.1 | 959.7 | 9/4 |
111 | 1416.9 | 968.5 | 34/15 |
112 | 1429.7 | 977.2 | 16/7 |
113 | 1442.4 | 985.9 | 23/10 |
114 | 1455.2 | 994.6 | 44/19, 51/22 |
115 | 1468 | 1003.4 | 7/3 |
116 | 1480.7 | 1012.1 | 40/17, 47/20 |
117 | 1493.5 | 1020.8 | 45/19 |
118 | 1506.2 | 1029.5 | 43/18 |
119 | 1519 | 1038.3 | |
120 | 1531.8 | 1047 | 46/19 |
121 | 1544.5 | 1055.7 | |
122 | 1557.3 | 1064.4 | |
123 | 1570.1 | 1073.2 | 52/21, 57/23 |
124 | 1582.8 | 1081.9 | |
125 | 1595.6 | 1090.6 | |
126 | 1608.4 | 1099.3 | 38/15 |
127 | 1621.1 | 1108.1 | 51/20 |
128 | 1633.9 | 1116.8 | 18/7 |
129 | 1646.7 | 1125.5 | 44/17, 57/22 |
130 | 1659.4 | 1134.2 | |
131 | 1672.2 | 1143 | 21/8 |
132 | 1685 | 1151.7 | 45/17 |
133 | 1697.7 | 1160.4 | 8/3 |
134 | 1710.5 | 1169.1 | 43/16, 51/19 |
135 | 1723.2 | 1177.9 | 46/17 |
136 | 1736 | 1186.6 | 30/11 |
137 | 1748.8 | 1195.3 | |
138 | 1761.5 | 1204 | 47/17 |
139 | 1774.3 | 1212.8 | 39/14 |
140 | 1787.1 | 1221.5 | |
141 | 1799.8 | 1230.2 | |
142 | 1812.6 | 1238.9 | 57/20 |
143 | 1825.4 | 1247.7 | |
144 | 1838.1 | 1256.4 | 26/9 |
145 | 1850.9 | 1265.1 | |
146 | 1863.7 | 1273.8 | 44/15 |
147 | 1876.4 | 1282.6 | |
148 | 1889.2 | 1291.3 | |
149 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.11 | +0.00 | -0.22 | -3.59 | -0.11 | +1.08 | -0.33 | +0.00 | -3.70 | -2.76 | -0.22 |
Relative (%) | -0.9 | +0.0 | -1.7 | -28.1 | -0.9 | +8.5 | -2.6 | +0.0 | -29.0 | -21.6 | -1.7 | |
Steps (reduced) |
94 (94) |
149 (0) |
188 (39) |
218 (69) |
243 (94) |
264 (115) |
282 (133) |
298 (0) |
312 (14) |
325 (27) |
337 (39) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.62 | +0.97 | -3.59 | -0.44 | -3.27 | -0.11 | -4.36 | -3.81 | +1.08 | -2.87 | -3.23 |
Relative (%) | +12.7 | +7.6 | -28.1 | -3.4 | -25.6 | -0.9 | -34.1 | -29.8 | +8.5 | -22.5 | -25.3 | |
Steps (reduced) |
348 (50) |
358 (60) |
367 (69) |
376 (78) |
384 (86) |
392 (94) |
399 (101) |
406 (108) |
413 (115) |
419 (121) |
425 (127) |