149edt
Jump to navigation
Jump to search
Prime factorization
149 (prime)
Step size
12.7648¢
Octave
94\149edt (1199.89¢)
(semiconvergent)
Consistency limit
23
Distinct consistency limit
14
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 148edt | 149edt | 150edt → |
(semiconvergent)
149 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 149edt or 149ed3), is a nonoctave tuning system that divides the interval of 3/1 into 149 equal parts of about 12.8 ¢ each. Each step represents a frequency ratio of 31/149, or the 149th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 12.765 | |
2 | 25.53 | |
3 | 38.294 | 44/43, 45/44, 46/45, 47/46 |
4 | 51.059 | 34/33, 35/34 |
5 | 63.824 | 27/26, 28/27 |
6 | 76.589 | 23/22, 47/45 |
7 | 89.354 | 20/19 |
8 | 102.118 | 35/33, 52/49 |
9 | 114.883 | 31/29, 47/44 |
10 | 127.648 | 14/13 |
11 | 140.413 | 51/47 |
12 | 153.178 | 47/43 |
13 | 165.942 | 11/10 |
14 | 178.707 | 41/37, 51/46 |
15 | 191.472 | 19/17, 48/43 |
16 | 204.237 | 9/8 |
17 | 217.002 | 17/15 |
18 | 229.766 | 8/7 |
19 | 242.531 | 23/20 |
20 | 255.296 | 22/19, 51/44 |
21 | 268.061 | 7/6 |
22 | 280.826 | 20/17 |
23 | 293.59 | 32/27, 45/38 |
24 | 306.355 | 37/31, 43/36 |
25 | 319.12 | |
26 | 331.885 | 23/19, 40/33 |
27 | 344.65 | |
28 | 357.414 | 43/35 |
29 | 370.179 | 26/21, 57/46 |
30 | 382.944 | |
31 | 395.709 | 44/35, 49/39, 54/43 |
32 | 408.474 | 19/15 |
33 | 421.238 | 37/29, 51/40 |
34 | 434.003 | 9/7 |
35 | 446.768 | 22/17, 57/44 |
36 | 459.533 | 30/23, 43/33 |
37 | 472.298 | 21/16, 46/35 |
38 | 485.062 | 41/31, 45/34, 49/37 |
39 | 497.827 | 4/3 |
40 | 510.592 | 43/32, 47/35, 51/38 |
41 | 523.357 | 23/17 |
42 | 536.122 | 15/11 |
43 | 548.886 | |
44 | 561.651 | 47/34 |
45 | 574.416 | 39/28, 46/33 |
46 | 587.181 | |
47 | 599.946 | 41/29 |
48 | 612.71 | 47/33, 57/40 |
49 | 625.475 | 33/23, 56/39 |
50 | 638.24 | |
51 | 651.005 | 51/35 |
52 | 663.77 | 22/15 |
53 | 676.534 | 34/23 |
54 | 689.299 | |
55 | 702.064 | 3/2 |
56 | 714.829 | |
57 | 727.594 | 35/23 |
58 | 740.358 | 23/15 |
59 | 753.123 | 17/11 |
60 | 765.888 | 14/9 |
61 | 778.653 | 47/30 |
62 | 791.418 | 30/19, 49/31 |
63 | 804.182 | 35/22, 43/27 |
64 | 816.947 | |
65 | 829.712 | 21/13 |
66 | 842.477 | |
67 | 855.242 | |
68 | 868.006 | 33/20, 38/23 |
69 | 880.771 | |
70 | 893.536 | 57/34 |
71 | 906.301 | 27/16 |
72 | 919.066 | 17/10 |
73 | 931.83 | 12/7 |
74 | 944.595 | |
75 | 957.36 | 40/23 |
76 | 970.125 | 7/4 |
77 | 982.889 | 30/17 |
78 | 995.654 | 16/9 |
79 | 1008.419 | 34/19, 43/24 |
80 | 1021.184 | |
81 | 1033.949 | 20/11 |
82 | 1046.713 | |
83 | 1059.478 | |
84 | 1072.243 | 13/7 |
85 | 1085.008 | |
86 | 1097.773 | 49/26 |
87 | 1110.537 | 19/10 |
88 | 1123.302 | 44/23 |
89 | 1136.067 | 27/14, 52/27 |
90 | 1148.832 | 33/17 |
91 | 1161.597 | 43/22, 45/23 |
92 | 1174.361 | |
93 | 1187.126 | |
94 | 1199.891 | 2/1 |
95 | 1212.656 | |
96 | 1225.421 | |
97 | 1238.185 | 45/22, 47/23 |
98 | 1250.95 | 35/17 |
99 | 1263.715 | 56/27 |
100 | 1276.48 | 23/11 |
101 | 1289.245 | 40/19 |
102 | 1302.009 | |
103 | 1314.774 | 47/22 |
104 | 1327.539 | 28/13 |
105 | 1340.304 | |
106 | 1353.069 | |
107 | 1365.833 | 11/5 |
108 | 1378.598 | 51/23 |
109 | 1391.363 | 38/17 |
110 | 1404.128 | 9/4 |
111 | 1416.893 | 34/15 |
112 | 1429.657 | 16/7 |
113 | 1442.422 | 23/10 |
114 | 1455.187 | 44/19, 51/22 |
115 | 1467.952 | 7/3 |
116 | 1480.717 | 40/17, 47/20 |
117 | 1493.481 | 45/19 |
118 | 1506.246 | 43/18 |
119 | 1519.011 | |
120 | 1531.776 | 46/19 |
121 | 1544.541 | |
122 | 1557.305 | |
123 | 1570.07 | 52/21, 57/23 |
124 | 1582.835 | |
125 | 1595.6 | |
126 | 1608.365 | 38/15 |
127 | 1621.129 | 51/20 |
128 | 1633.894 | 18/7 |
129 | 1646.659 | 44/17, 57/22 |
130 | 1659.424 | |
131 | 1672.189 | 21/8 |
132 | 1684.953 | 45/17 |
133 | 1697.718 | 8/3 |
134 | 1710.483 | 43/16, 51/19 |
135 | 1723.248 | 46/17 |
136 | 1736.013 | 30/11 |
137 | 1748.777 | |
138 | 1761.542 | 47/17 |
139 | 1774.307 | 39/14 |
140 | 1787.072 | |
141 | 1799.837 | |
142 | 1812.601 | 57/20 |
143 | 1825.366 | |
144 | 1838.131 | 26/9 |
145 | 1850.896 | |
146 | 1863.661 | 44/15 |
147 | 1876.425 | |
148 | 1889.19 | |
149 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.11 | +0.00 | -0.22 | -3.59 | -0.11 | +1.08 | -0.33 | +0.00 | -3.70 | -2.76 | -0.22 |
Relative (%) | -0.9 | +0.0 | -1.7 | -28.1 | -0.9 | +8.5 | -2.6 | +0.0 | -29.0 | -21.6 | -1.7 | |
Steps (reduced) |
94 (94) |
149 (0) |
188 (39) |
218 (69) |
243 (94) |
264 (115) |
282 (133) |
298 (0) |
312 (14) |
325 (27) |
337 (39) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.62 | +0.97 | -3.59 | -0.44 | -3.27 | -0.11 | -4.36 | -3.81 | +1.08 | -2.87 | -3.23 |
Relative (%) | +12.7 | +7.6 | -28.1 | -3.4 | -25.6 | -0.9 | -34.1 | -29.8 | +8.5 | -22.5 | -25.3 | |
Steps (reduced) |
348 (50) |
358 (60) |
367 (69) |
376 (78) |
384 (86) |
392 (94) |
399 (101) |
406 (108) |
413 (115) |
419 (121) |
425 (127) |