203edt
Jump to navigation
Jump to search
Prime factorization
7 × 29
Step size
9.36924¢
Octave
128\203edt (1199.26¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 202edt | 203edt | 204edt → |
203 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 203edt or 203ed3), is a nonoctave tuning system that divides the interval of 3/1 into 203 equal parts of about 9.37 ¢ each. Each step represents a frequency ratio of 31/203, or the 203rd root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 9.37 | |
2 | 18.74 | |
3 | 28.11 | 63/62 |
4 | 37.48 | 46/45, 47/46, 48/47 |
5 | 46.85 | 37/36, 38/37 |
6 | 56.22 | |
7 | 65.58 | 27/26 |
8 | 74.95 | 47/45 |
9 | 84.32 | |
10 | 93.69 | 19/18 |
11 | 103.06 | 69/65 |
12 | 112.43 | 16/15 |
13 | 121.8 | 44/41 |
14 | 131.17 | 41/38, 68/63, 69/64 |
15 | 140.54 | |
16 | 149.91 | 12/11 |
17 | 159.28 | 34/31, 57/52 |
18 | 168.65 | 43/39 |
19 | 178.02 | 41/37 |
20 | 187.38 | 39/35 |
21 | 196.75 | 65/58 |
22 | 206.12 | |
23 | 215.49 | |
24 | 224.86 | 41/36 |
25 | 234.23 | |
26 | 243.6 | 38/33 |
27 | 252.97 | 22/19 |
28 | 262.34 | 64/55 |
29 | 271.71 | 55/47 |
30 | 281.08 | |
31 | 290.45 | |
32 | 299.82 | 44/37, 69/58 |
33 | 309.18 | 55/46 |
34 | 318.55 | |
35 | 327.92 | 29/24 |
36 | 337.29 | 62/51 |
37 | 346.66 | 11/9 |
38 | 356.03 | 43/35, 70/57 |
39 | 365.4 | 21/17 |
40 | 374.77 | 36/29, 41/33 |
41 | 384.14 | |
42 | 393.51 | 54/43, 69/55 |
43 | 402.88 | |
44 | 412.25 | 33/26, 52/41 |
45 | 421.62 | 37/29 |
46 | 430.98 | |
47 | 440.35 | 58/45 |
48 | 449.72 | 35/27, 48/37 |
49 | 459.09 | 30/23, 43/33 |
50 | 468.46 | 38/29 |
51 | 477.83 | 29/22, 54/41 |
52 | 487.2 | 57/43 |
53 | 496.57 | |
54 | 505.94 | |
55 | 515.31 | 35/26 |
56 | 524.68 | 42/31, 65/48 |
57 | 534.05 | 64/47 |
58 | 543.42 | 26/19 |
59 | 552.78 | |
60 | 562.15 | 65/47 |
61 | 571.52 | 32/23 |
62 | 580.89 | |
63 | 590.26 | 45/32, 52/37 |
64 | 599.63 | 41/29, 58/41, 65/46 |
65 | 609 | 27/19, 64/45 |
66 | 618.37 | |
67 | 627.74 | 23/16 |
68 | 637.11 | 13/9 |
69 | 646.48 | |
70 | 655.85 | |
71 | 665.22 | 47/32, 69/47 |
72 | 674.59 | 31/21, 65/44 |
73 | 683.95 | |
74 | 693.32 | |
75 | 702.69 | 3/2 |
76 | 712.06 | |
77 | 721.43 | 44/29 |
78 | 730.8 | |
79 | 740.17 | 23/15 |
80 | 749.54 | 37/24 |
81 | 758.91 | |
82 | 768.28 | |
83 | 777.65 | 47/30, 58/37 |
84 | 787.02 | 52/33 |
85 | 796.39 | 19/12 |
86 | 805.75 | 43/27 |
87 | 815.12 | |
88 | 824.49 | 66/41 |
89 | 833.86 | 34/21 |
90 | 843.23 | 70/43 |
91 | 852.6 | 18/11 |
92 | 861.97 | 51/31 |
93 | 871.34 | 43/26, 48/29 |
94 | 880.71 | |
95 | 890.08 | |
96 | 899.45 | 37/22 |
97 | 908.82 | |
98 | 918.19 | |
99 | 927.55 | 41/24 |
100 | 936.92 | 55/32 |
101 | 946.29 | 19/11 |
102 | 955.66 | 33/19 |
103 | 965.03 | |
104 | 974.4 | |
105 | 983.77 | |
106 | 993.14 | |
107 | 1002.51 | 66/37 |
108 | 1011.88 | 52/29, 70/39 |
109 | 1021.25 | |
110 | 1030.62 | 29/16 |
111 | 1039.99 | 31/17 |
112 | 1049.35 | 11/6 |
113 | 1058.72 | |
114 | 1068.09 | 63/34 |
115 | 1077.46 | 41/22 |
116 | 1086.83 | |
117 | 1096.2 | |
118 | 1105.57 | 36/19 |
119 | 1114.94 | |
120 | 1124.31 | |
121 | 1133.68 | 52/27 |
122 | 1143.05 | |
123 | 1152.42 | |
124 | 1161.79 | 45/23 |
125 | 1171.15 | |
126 | 1180.52 | |
127 | 1189.89 | |
128 | 1199.26 | 2/1 |
129 | 1208.63 | |
130 | 1218 | |
131 | 1227.37 | 63/31, 65/32 |
132 | 1236.74 | 47/23 |
133 | 1246.11 | |
134 | 1255.48 | |
135 | 1264.85 | 27/13 |
136 | 1274.22 | 48/23 |
137 | 1283.59 | |
138 | 1292.95 | 19/9 |
139 | 1302.32 | 70/33 |
140 | 1311.69 | 32/15 |
141 | 1321.06 | |
142 | 1330.43 | 69/32 |
143 | 1339.8 | |
144 | 1349.17 | |
145 | 1358.54 | 57/26 |
146 | 1367.91 | |
147 | 1377.28 | 31/14 |
148 | 1386.65 | |
149 | 1396.02 | |
150 | 1405.39 | |
151 | 1414.75 | 43/19 |
152 | 1424.12 | 41/18, 66/29 |
153 | 1433.49 | |
154 | 1442.86 | 23/10 |
155 | 1452.23 | 37/16 |
156 | 1461.6 | |
157 | 1470.97 | |
158 | 1480.34 | |
159 | 1489.71 | 26/11 |
160 | 1499.08 | |
161 | 1508.45 | 43/18, 55/23 |
162 | 1517.82 | |
163 | 1527.19 | 29/12 |
164 | 1536.55 | 17/7 |
165 | 1545.92 | |
166 | 1555.29 | 27/11 |
167 | 1564.66 | |
168 | 1574.03 | |
169 | 1583.4 | |
170 | 1592.77 | |
171 | 1602.14 | 58/23 |
172 | 1611.51 | |
173 | 1620.88 | |
174 | 1630.25 | |
175 | 1639.62 | |
176 | 1648.99 | 57/22, 70/27 |
177 | 1658.35 | |
178 | 1667.72 | |
179 | 1677.09 | |
180 | 1686.46 | |
181 | 1695.83 | |
182 | 1705.2 | |
183 | 1714.57 | 35/13 |
184 | 1723.94 | 65/24 |
185 | 1733.31 | |
186 | 1742.68 | 52/19 |
187 | 1752.05 | 11/4 |
188 | 1761.42 | |
189 | 1770.79 | 64/23 |
190 | 1780.15 | |
191 | 1789.52 | 45/16 |
192 | 1798.89 | 65/23 |
193 | 1808.26 | 54/19 |
194 | 1817.63 | |
195 | 1827 | |
196 | 1836.37 | 26/9 |
197 | 1845.74 | |
198 | 1855.11 | |
199 | 1864.48 | 47/16 |
200 | 1873.85 | 62/21 |
201 | 1883.22 | |
202 | 1892.59 | |
203 | 1901.96 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.74 | +0.00 | -1.48 | -3.65 | -0.74 | +4.10 | -2.21 | +0.00 | -4.39 | -0.75 | -1.48 |
Relative (%) | -7.9 | +0.0 | -15.7 | -39.0 | -7.9 | +43.8 | -23.6 | +0.0 | -46.8 | -8.0 | -15.7 | |
Steps (reduced) |
128 (128) |
203 (0) |
256 (53) |
297 (94) |
331 (128) |
360 (157) |
384 (181) |
406 (0) |
425 (19) |
443 (37) |
459 (53) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.49 | +3.36 | -3.65 | -2.95 | +4.52 | -0.74 | -0.65 | +4.24 | +4.10 | -1.48 | -3.49 |
Relative (%) | +5.2 | +35.9 | -39.0 | -31.5 | +48.3 | -7.9 | -6.9 | +45.3 | +43.8 | -15.8 | -37.2 | |
Steps (reduced) |
474 (68) |
488 (82) |
500 (94) |
512 (106) |
524 (118) |
534 (128) |
544 (138) |
554 (148) |
563 (157) |
571 (165) |
579 (173) |