125edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 124edt 125edt 126edt →
Prime factorization 53
Step size 15.2156¢ 
Octave 79\125edt (1202.04¢)
Consistency limit 5
Distinct consistency limit 5

125 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 125edt or 125ed3), is a nonoctave tuning system that divides the interval of 3/1 into 125 equal parts of about 15.2⁠ ⁠¢ each. Each step represents a frequency ratio of 31/125, or the 125th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 15.2
2 30.4
3 45.6 37/36, 38/37, 39/38, 40/39
4 60.9 29/28
5 76.1 23/22, 47/45
6 91.3 39/37
7 106.5 33/31, 50/47
8 121.7 44/41
9 136.9 13/12
10 152.2 12/11, 47/43
11 167.4 43/39
12 182.6 10/9
13 197.8 28/25, 37/33, 46/41
14 213 26/23, 43/38
15 228.2
16 243.5 23/20, 38/33
17 258.7 29/25, 36/31, 43/37
18 273.9 34/29, 48/41
19 289.1 13/11
20 304.3 31/26
21 319.5
22 334.7 17/14, 40/33
23 350
24 365.2 21/17
25 380.4
26 395.6 39/31
27 410.8 19/15
28 426 23/18
29 441.3 31/24, 40/31
30 456.5 43/33
31 471.7
32 486.9 45/34
33 502.1
34 517.3 31/23
35 532.5 34/25
36 547.8
37 563 18/13
38 578.2
39 593.4 31/22, 38/27
40 608.6 27/19
41 623.8 33/23, 43/30
42 639.1
43 654.3
44 669.5 25/17, 28/19
45 684.7 46/31
46 699.9
47 715.1
48 730.4 29/19
49 745.6 20/13
50 760.8 45/29
51 776 36/23, 47/30
52 791.2 30/19
53 806.4 43/27
54 821.6 37/23, 45/28
55 836.9 47/29
56 852.1 18/11
57 867.3 33/20
58 882.5 5/3
59 897.7 42/25, 47/28
60 912.9 39/23
61 928.2 41/24
62 943.4 50/29
63 958.6 40/23, 47/27
64 973.8
65 989 23/13
66 1004.2 25/14
67 1019.4 9/5
68 1034.7 20/11
69 1049.9 11/6
70 1065.1 37/20, 50/27
71 1080.3 28/15
72 1095.5
73 1110.7 19/10
74 1126 23/12
75 1141.2 29/15
76 1156.4 39/20
77 1171.6
78 1186.8
79 1202
80 1217.3
81 1232.5 51/25
82 1247.7 37/18
83 1262.9
84 1278.1 23/11
85 1293.3 19/9
86 1308.5
87 1323.8 43/20
88 1339 13/6
89 1354.2
90 1369.4
91 1384.6
92 1399.8
93 1415.1 34/15, 43/19
94 1430.3
95 1445.5
96 1460.7
97 1475.9
98 1491.1 45/19
99 1506.3 31/13, 43/18
100 1521.6
101 1536.8 17/7
102 1552
103 1567.2 42/17, 47/19
104 1582.4
105 1597.6
106 1612.9 33/13
107 1628.1 41/16
108 1643.3 31/12
109 1658.5
110 1673.7 50/19
111 1688.9
112 1704.2
113 1719.4 27/10
114 1734.6
115 1749.8 11/4
116 1765 36/13
117 1780.2
118 1795.4 31/11
119 1810.7 37/13
120 1825.9
121 1841.1
122 1856.3 38/13
123 1871.5
124 1886.7
125 1902 3/1

Harmonics

Approximation of harmonics in 125edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.04 +0.00 +4.07 -1.85 +2.04 -6.17 +6.11 +0.00 +0.18 +2.55 +4.07
Relative (%) +13.4 +0.0 +26.8 -12.2 +13.4 -40.5 +40.1 +0.0 +1.2 +16.8 +26.8
Steps
(reduced)
79
(79)
125
(0)
158
(33)
183
(58)
204
(79)
221
(96)
237
(112)
250
(0)
262
(12)
273
(23)
283
(33)
Approximation of harmonics in 125edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.44 -4.13 -1.85 -7.07 -5.52 +2.04 -0.27 +2.22 -6.17 +4.59 +3.71
Relative (%) +16.0 -27.2 -12.2 -46.5 -36.3 +13.4 -1.8 +14.6 -40.5 +30.1 +24.4
Steps
(reduced)
292
(42)
300
(50)
308
(58)
315
(65)
322
(72)
329
(79)
335
(85)
341
(91)
346
(96)
352
(102)
357
(107)