125edt

From Xenharmonic Wiki
Jump to navigation Jump to search
This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 124edt 125edt 126edt →
Prime factorization 53
Step size 15.2156 ¢ 
Octave 79\125edt (1202.04 ¢)
Consistency limit 6
Distinct consistency limit 6

125 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 125edt or 125ed3), is a nonoctave tuning system that divides the interval of 3/1 into 125 equal parts of about 15.2 ¢ each. Each step represents a frequency ratio of 31/125, or the 125th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15.2 10.4
2 30.4 20.8
3 45.6 31.2 37/36, 38/37, 39/38, 40/39
4 60.9 41.6 29/28
5 76.1 52 23/22, 47/45
6 91.3 62.4 39/37
7 106.5 72.8 33/31, 50/47
8 121.7 83.2 44/41
9 136.9 93.6 13/12
10 152.2 104 12/11, 47/43
11 167.4 114.4 43/39
12 182.6 124.8 10/9
13 197.8 135.2 28/25, 37/33, 46/41
14 213 145.6 26/23, 43/38
15 228.2 156
16 243.5 166.4 23/20, 38/33
17 258.7 176.8 29/25, 36/31, 43/37
18 273.9 187.2 34/29, 48/41
19 289.1 197.6 13/11
20 304.3 208 31/26
21 319.5 218.4
22 334.7 228.8 17/14, 40/33
23 350 239.2
24 365.2 249.6 21/17
25 380.4 260
26 395.6 270.4 39/31
27 410.8 280.8 19/15
28 426 291.2 23/18
29 441.3 301.6 31/24, 40/31
30 456.5 312 43/33
31 471.7 322.4
32 486.9 332.8 45/34
33 502.1 343.2
34 517.3 353.6 31/23
35 532.5 364 34/25
36 547.8 374.4
37 563 384.8 18/13
38 578.2 395.2
39 593.4 405.6 31/22, 38/27
40 608.6 416 27/19
41 623.8 426.4 33/23, 43/30
42 639.1 436.8
43 654.3 447.2
44 669.5 457.6 25/17, 28/19
45 684.7 468 46/31
46 699.9 478.4
47 715.1 488.8
48 730.4 499.2 29/19
49 745.6 509.6 20/13
50 760.8 520 45/29
51 776 530.4 36/23, 47/30
52 791.2 540.8 30/19
53 806.4 551.2 43/27
54 821.6 561.6 37/23, 45/28
55 836.9 572 47/29
56 852.1 582.4 18/11
57 867.3 592.8 33/20
58 882.5 603.2 5/3
59 897.7 613.6 42/25, 47/28
60 912.9 624 39/23
61 928.2 634.4 41/24
62 943.4 644.8 50/29
63 958.6 655.2 40/23, 47/27
64 973.8 665.6
65 989 676 23/13
66 1004.2 686.4 25/14
67 1019.4 696.8 9/5
68 1034.7 707.2 20/11
69 1049.9 717.6 11/6
70 1065.1 728 37/20, 50/27
71 1080.3 738.4 28/15
72 1095.5 748.8
73 1110.7 759.2 19/10
74 1126 769.6 23/12
75 1141.2 780 29/15
76 1156.4 790.4 39/20
77 1171.6 800.8
78 1186.8 811.2
79 1202 821.6
80 1217.3 832
81 1232.5 842.4 51/25
82 1247.7 852.8 37/18
83 1262.9 863.2
84 1278.1 873.6 23/11
85 1293.3 884 19/9
86 1308.5 894.4
87 1323.8 904.8 43/20
88 1339 915.2 13/6
89 1354.2 925.6
90 1369.4 936
91 1384.6 946.4
92 1399.8 956.8
93 1415.1 967.2 34/15, 43/19
94 1430.3 977.6
95 1445.5 988
96 1460.7 998.4
97 1475.9 1008.8
98 1491.1 1019.2 45/19
99 1506.3 1029.6 31/13, 43/18
100 1521.6 1040
101 1536.8 1050.4 17/7
102 1552 1060.8
103 1567.2 1071.2 42/17, 47/19
104 1582.4 1081.6
105 1597.6 1092
106 1612.9 1102.4 33/13
107 1628.1 1112.8 41/16
108 1643.3 1123.2 31/12
109 1658.5 1133.6
110 1673.7 1144 50/19
111 1688.9 1154.4
112 1704.2 1164.8
113 1719.4 1175.2 27/10
114 1734.6 1185.6
115 1749.8 1196 11/4
116 1765 1206.4 36/13
117 1780.2 1216.8
118 1795.4 1227.2 31/11
119 1810.7 1237.6 37/13
120 1825.9 1248
121 1841.1 1258.4
122 1856.3 1268.8 38/13
123 1871.5 1279.2
124 1886.7 1289.6
125 1902 1300 3/1

Harmonics

Approximation of harmonics in 125edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.04 +0.00 +4.07 -1.85 +2.04 -6.17 +6.11 +0.00 +0.18 +2.55 +4.07
Relative (%) +13.4 +0.0 +26.8 -12.2 +13.4 -40.5 +40.1 +0.0 +1.2 +16.8 +26.8
Steps
(reduced)
79
(79)
125
(0)
158
(33)
183
(58)
204
(79)
221
(96)
237
(112)
250
(0)
262
(12)
273
(23)
283
(33)
Approximation of harmonics in 125edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.44 -4.13 -1.85 -7.07 -5.52 +2.04 -0.27 +2.22 -6.17 +4.59 +3.71
Relative (%) +16.0 -27.2 -12.2 -46.5 -36.3 +13.4 -1.8 +14.6 -40.5 +30.1 +24.4
Steps
(reduced)
292
(42)
300
(50)
308
(58)
315
(65)
322
(72)
329
(79)
335
(85)
341
(91)
346
(96)
352
(102)
357
(107)