125edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 124edt 125edt 126edt →
Prime factorization 53
Step size 15.2156¢ 
Octave 79\125edt (1202.04¢)
Consistency limit 5
Distinct consistency limit 5

125 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 125edt or 125ed3), is a nonoctave tuning system that divides the interval of 3/1 into 125 equal parts of about 15.2 ¢ each. Each step represents a frequency ratio of 31/125, or the 125th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 15.216
2 30.431
3 45.647 37/36, 38/37, 39/38, 40/39
4 60.863 29/28
5 76.078 23/22, 47/45
6 91.294 39/37
7 106.509 33/31, 50/47
8 121.725 44/41
9 136.941 13/12
10 152.156 12/11, 47/43
11 167.372 43/39
12 182.588 10/9
13 197.803 28/25, 37/33, 46/41
14 213.019 26/23, 43/38
15 228.235
16 243.45 23/20, 38/33
17 258.666 29/25, 36/31, 43/37
18 273.882 34/29, 48/41
19 289.097 13/11
20 304.313 31/26
21 319.528
22 334.744 17/14, 40/33
23 349.96
24 365.175 21/17
25 380.391
26 395.607 39/31
27 410.822 19/15
28 426.038 23/18
29 441.254 31/24, 40/31
30 456.469 43/33
31 471.685
32 486.9 45/34
33 502.116
34 517.332 31/23
35 532.547 34/25
36 547.763
37 562.979 18/13
38 578.194
39 593.41 31/22, 38/27
40 608.626 27/19
41 623.841 33/23, 43/30
42 639.057
43 654.273
44 669.488 25/17, 28/19
45 684.704 46/31
46 699.919
47 715.135
48 730.351 29/19
49 745.566 20/13
50 760.782 45/29
51 775.998 36/23, 47/30
52 791.213 30/19
53 806.429 43/27
54 821.645 37/23, 45/28
55 836.86 47/29
56 852.076 18/11
57 867.291 33/20
58 882.507 5/3
59 897.723 42/25, 47/28
60 912.938 39/23
61 928.154 41/24
62 943.37 50/29
63 958.585 40/23, 47/27
64 973.801
65 989.017 23/13
66 1004.232 25/14
67 1019.448 9/5
68 1034.664 20/11
69 1049.879 11/6
70 1065.095 37/20, 50/27
71 1080.31 28/15
72 1095.526
73 1110.742 19/10
74 1125.957 23/12
75 1141.173 29/15
76 1156.389 39/20
77 1171.604
78 1186.82
79 1202.036
80 1217.251
81 1232.467 51/25
82 1247.682 37/18
83 1262.898
84 1278.114 23/11
85 1293.329 19/9
86 1308.545
87 1323.761 43/20
88 1338.976 13/6
89 1354.192
90 1369.408
91 1384.623
92 1399.839
93 1415.055 34/15, 43/19
94 1430.27
95 1445.486
96 1460.701
97 1475.917
98 1491.133 45/19
99 1506.348 31/13, 43/18
100 1521.564
101 1536.78 17/7
102 1551.995
103 1567.211 42/17, 47/19
104 1582.427
105 1597.642
106 1612.858 33/13
107 1628.073 41/16
108 1643.289 31/12
109 1658.505
110 1673.72 50/19
111 1688.936
112 1704.152
113 1719.367 27/10
114 1734.583
115 1749.799 11/4
116 1765.014 36/13
117 1780.23
118 1795.446 31/11
119 1810.661 37/13
120 1825.877
121 1841.092
122 1856.308 38/13
123 1871.524
124 1886.739
125 1901.955 3/1

Harmonics

Approximation of harmonics in 125edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +2.04 +0.00 +4.07 -1.85 +2.04 -6.17 +6.11 +0.00 +0.18 +2.55 +4.07
Relative (%) +13.4 +0.0 +26.8 -12.2 +13.4 -40.5 +40.1 +0.0 +1.2 +16.8 +26.8
Steps
(reduced)
79
(79)
125
(0)
158
(33)
183
(58)
204
(79)
221
(96)
237
(112)
250
(0)
262
(12)
273
(23)
283
(33)
Approximation of harmonics in 125edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.44 -4.13 -1.85 -7.07 -5.52 +2.04 -0.27 +2.22 -6.17 +4.59 +3.71
Relative (%) +16.0 -27.2 -12.2 -46.5 -36.3 +13.4 -1.8 +14.6 -40.5 +30.1 +24.4
Steps
(reduced)
292
(42)
300
(50)
308
(58)
315
(65)
322
(72)
329
(79)
335
(85)
341
(91)
346
(96)
352
(102)
357
(107)