125edt
Jump to navigation
Jump to search
Prime factorization
53
Step size
15.2156¢
Octave
79\125edt (1202.04¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 124edt | 125edt | 126edt → |
125 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 125edt or 125ed3), is a nonoctave tuning system that divides the interval of 3/1 into 125 equal parts of about 15.2 ¢ each. Each step represents a frequency ratio of 31/125, or the 125th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.2 | |
2 | 30.4 | |
3 | 45.6 | 37/36, 38/37, 39/38, 40/39 |
4 | 60.9 | 29/28 |
5 | 76.1 | 23/22, 47/45 |
6 | 91.3 | 39/37 |
7 | 106.5 | 33/31, 50/47 |
8 | 121.7 | 44/41 |
9 | 136.9 | 13/12 |
10 | 152.2 | 12/11, 47/43 |
11 | 167.4 | 43/39 |
12 | 182.6 | 10/9 |
13 | 197.8 | 28/25, 37/33, 46/41 |
14 | 213 | 26/23, 43/38 |
15 | 228.2 | |
16 | 243.5 | 23/20, 38/33 |
17 | 258.7 | 29/25, 36/31, 43/37 |
18 | 273.9 | 34/29, 48/41 |
19 | 289.1 | 13/11 |
20 | 304.3 | 31/26 |
21 | 319.5 | |
22 | 334.7 | 17/14, 40/33 |
23 | 350 | |
24 | 365.2 | 21/17 |
25 | 380.4 | |
26 | 395.6 | 39/31 |
27 | 410.8 | 19/15 |
28 | 426 | 23/18 |
29 | 441.3 | 31/24, 40/31 |
30 | 456.5 | 43/33 |
31 | 471.7 | |
32 | 486.9 | 45/34 |
33 | 502.1 | |
34 | 517.3 | 31/23 |
35 | 532.5 | 34/25 |
36 | 547.8 | |
37 | 563 | 18/13 |
38 | 578.2 | |
39 | 593.4 | 31/22, 38/27 |
40 | 608.6 | 27/19 |
41 | 623.8 | 33/23, 43/30 |
42 | 639.1 | |
43 | 654.3 | |
44 | 669.5 | 25/17, 28/19 |
45 | 684.7 | 46/31 |
46 | 699.9 | |
47 | 715.1 | |
48 | 730.4 | 29/19 |
49 | 745.6 | 20/13 |
50 | 760.8 | 45/29 |
51 | 776 | 36/23, 47/30 |
52 | 791.2 | 30/19 |
53 | 806.4 | 43/27 |
54 | 821.6 | 37/23, 45/28 |
55 | 836.9 | 47/29 |
56 | 852.1 | 18/11 |
57 | 867.3 | 33/20 |
58 | 882.5 | 5/3 |
59 | 897.7 | 42/25, 47/28 |
60 | 912.9 | 39/23 |
61 | 928.2 | 41/24 |
62 | 943.4 | 50/29 |
63 | 958.6 | 40/23, 47/27 |
64 | 973.8 | |
65 | 989 | 23/13 |
66 | 1004.2 | 25/14 |
67 | 1019.4 | 9/5 |
68 | 1034.7 | 20/11 |
69 | 1049.9 | 11/6 |
70 | 1065.1 | 37/20, 50/27 |
71 | 1080.3 | 28/15 |
72 | 1095.5 | |
73 | 1110.7 | 19/10 |
74 | 1126 | 23/12 |
75 | 1141.2 | 29/15 |
76 | 1156.4 | 39/20 |
77 | 1171.6 | |
78 | 1186.8 | |
79 | 1202 | |
80 | 1217.3 | |
81 | 1232.5 | 51/25 |
82 | 1247.7 | 37/18 |
83 | 1262.9 | |
84 | 1278.1 | 23/11 |
85 | 1293.3 | 19/9 |
86 | 1308.5 | |
87 | 1323.8 | 43/20 |
88 | 1339 | 13/6 |
89 | 1354.2 | |
90 | 1369.4 | |
91 | 1384.6 | |
92 | 1399.8 | |
93 | 1415.1 | 34/15, 43/19 |
94 | 1430.3 | |
95 | 1445.5 | |
96 | 1460.7 | |
97 | 1475.9 | |
98 | 1491.1 | 45/19 |
99 | 1506.3 | 31/13, 43/18 |
100 | 1521.6 | |
101 | 1536.8 | 17/7 |
102 | 1552 | |
103 | 1567.2 | 42/17, 47/19 |
104 | 1582.4 | |
105 | 1597.6 | |
106 | 1612.9 | 33/13 |
107 | 1628.1 | 41/16 |
108 | 1643.3 | 31/12 |
109 | 1658.5 | |
110 | 1673.7 | 50/19 |
111 | 1688.9 | |
112 | 1704.2 | |
113 | 1719.4 | 27/10 |
114 | 1734.6 | |
115 | 1749.8 | 11/4 |
116 | 1765 | 36/13 |
117 | 1780.2 | |
118 | 1795.4 | 31/11 |
119 | 1810.7 | 37/13 |
120 | 1825.9 | |
121 | 1841.1 | |
122 | 1856.3 | 38/13 |
123 | 1871.5 | |
124 | 1886.7 | |
125 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.04 | +0.00 | +4.07 | -1.85 | +2.04 | -6.17 | +6.11 | +0.00 | +0.18 | +2.55 | +4.07 |
Relative (%) | +13.4 | +0.0 | +26.8 | -12.2 | +13.4 | -40.5 | +40.1 | +0.0 | +1.2 | +16.8 | +26.8 | |
Steps (reduced) |
79 (79) |
125 (0) |
158 (33) |
183 (58) |
204 (79) |
221 (96) |
237 (112) |
250 (0) |
262 (12) |
273 (23) |
283 (33) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.44 | -4.13 | -1.85 | -7.07 | -5.52 | +2.04 | -0.27 | +2.22 | -6.17 | +4.59 | +3.71 |
Relative (%) | +16.0 | -27.2 | -12.2 | -46.5 | -36.3 | +13.4 | -1.8 | +14.6 | -40.5 | +30.1 | +24.4 | |
Steps (reduced) |
292 (42) |
300 (50) |
308 (58) |
315 (65) |
322 (72) |
329 (79) |
335 (85) |
341 (91) |
346 (96) |
352 (102) |
357 (107) |