124edt
Jump to navigation
Jump to search
Prime factorization
22 × 31
Step size
15.3383¢
Octave
78\124edt (1196.39¢) (→39\62edt)
Consistency limit
4
Distinct consistency limit
4
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 123edt | 124edt | 125edt → |
124 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 124edt or 124ed3), is a nonoctave tuning system that divides the interval of 3/1 into 124 equal parts of about 15.3 ¢ each. Each step represents a frequency ratio of 31/124, or the 124th root of 3.
Theory
This tuning is enfactored in the 7-limit. Using the patent val, it tempers out 128/125 in the 5-limit; 126/125 and 64/63 in the 7-limit; 120/119 in the 17-limit; 96/95 in the 19-limit; 92/91 in the 23-limit; 116/115 in the 29-limit; 112/111 in the 37-limit; and 106/105 in the 53-limit.
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -3.61 | +0.00 | -7.22 | +5.27 | -3.61 | +5.61 | +4.51 | +0.00 | +1.66 | +5.37 | -7.22 |
Relative (%) | -23.5 | +0.0 | -47.1 | +34.3 | -23.5 | +36.6 | +29.4 | +0.0 | +10.8 | +35.0 | -47.1 | |
Steps (reduced) |
78 (78) |
124 (0) |
156 (32) |
182 (58) |
202 (78) |
220 (96) |
235 (111) |
248 (0) |
260 (12) |
271 (23) |
280 (32) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +7.59 | +2.00 | +5.27 | +0.90 | +3.32 | -3.61 | -5.18 | -1.95 | +5.61 | +1.77 | +1.50 |
Relative (%) | +49.5 | +13.0 | +34.3 | +5.9 | +21.6 | -23.5 | -33.8 | -12.7 | +36.6 | +11.5 | +9.8 | |
Steps (reduced) |
290 (42) |
298 (50) |
306 (58) |
313 (65) |
320 (72) |
326 (78) |
332 (84) |
338 (90) |
344 (96) |
349 (101) |
354 (106) |
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 15.3 | 10.5 | |
2 | 30.7 | 21 | |
3 | 46 | 31.5 | |
4 | 61.4 | 41.9 | 28/27, 29/28 |
5 | 76.7 | 52.4 | 23/22, 47/45 |
6 | 92 | 62.9 | 19/18, 39/37 |
7 | 107.4 | 73.4 | 33/31, 50/47 |
8 | 122.7 | 83.9 | 29/27, 44/41 |
9 | 138 | 94.4 | |
10 | 153.4 | 104.8 | 47/43 |
11 | 168.7 | 115.3 | 43/39 |
12 | 184.1 | 125.8 | 10/9 |
13 | 199.4 | 136.3 | 37/33, 46/41 |
14 | 214.7 | 146.8 | |
15 | 230.1 | 157.3 | |
16 | 245.4 | 167.7 | |
17 | 260.8 | 178.2 | 43/37, 50/43 |
18 | 276.1 | 188.7 | 27/23, 34/29 |
19 | 291.4 | 199.2 | |
20 | 306.8 | 209.7 | 37/31 |
21 | 322.1 | 220.2 | 47/39 |
22 | 337.4 | 230.6 | 17/14, 45/37 |
23 | 352.8 | 241.1 | 27/22 |
24 | 368.1 | 251.6 | 26/21 |
25 | 383.5 | 262.1 | |
26 | 398.8 | 272.6 | 34/27, 39/31 |
27 | 414.1 | 283.1 | 33/26, 47/37 |
28 | 429.5 | 293.5 | 50/39 |
29 | 444.8 | 304 | 22/17 |
30 | 460.2 | 314.5 | 30/23, 43/33 |
31 | 475.5 | 325 | |
32 | 490.8 | 335.5 | |
33 | 506.2 | 346 | |
34 | 521.5 | 356.5 | 23/17, 50/37 |
35 | 536.8 | 366.9 | 15/11 |
36 | 552.2 | 377.4 | |
37 | 567.5 | 387.9 | 43/31 |
38 | 582.9 | 398.4 | 7/5 |
39 | 598.2 | 408.9 | 41/29 |
40 | 613.5 | 419.4 | 47/33 |
41 | 628.9 | 429.8 | |
42 | 644.2 | 440.3 | 29/20, 45/31 |
43 | 659.5 | 450.8 | 41/28 |
44 | 674.9 | 461.3 | 31/21, 34/23 |
45 | 690.2 | 471.8 | |
46 | 705.6 | 482.3 | |
47 | 720.9 | 492.7 | 44/29, 47/31, 50/33 |
48 | 736.2 | 503.2 | 26/17 |
49 | 751.6 | 513.7 | |
50 | 766.9 | 524.2 | |
51 | 782.3 | 534.7 | 11/7 |
52 | 797.6 | 545.2 | 46/29 |
53 | 812.9 | 555.6 | |
54 | 828.3 | 566.1 | 50/31 |
55 | 843.6 | 576.6 | 44/27 |
56 | 858.9 | 587.1 | 23/14 |
57 | 874.3 | 597.6 | |
58 | 889.6 | 608.1 | |
59 | 905 | 618.5 | |
60 | 920.3 | 629 | 17/10 |
61 | 935.6 | 639.5 | |
62 | 951 | 650 | 26/15, 45/26 |
63 | 966.3 | 660.5 | |
64 | 981.7 | 671 | 30/17, 37/21 |
65 | 997 | 681.5 | |
66 | 1012.3 | 691.9 | |
67 | 1027.7 | 702.4 | |
68 | 1043 | 712.9 | 42/23 |
69 | 1058.3 | 723.4 | |
70 | 1073.7 | 733.9 | |
71 | 1089 | 744.4 | |
72 | 1104.4 | 754.8 | |
73 | 1119.7 | 765.3 | 21/11 |
74 | 1135 | 775.8 | |
75 | 1150.4 | 786.3 | |
76 | 1165.7 | 796.8 | 49/25, 51/26 |
77 | 1181.1 | 807.3 | |
78 | 1196.4 | 817.7 | |
79 | 1211.7 | 828.2 | |
80 | 1227.1 | 838.7 | |
81 | 1242.4 | 849.2 | 41/20, 43/21 |
82 | 1257.7 | 859.7 | 31/15 |
83 | 1273.1 | 870.2 | |
84 | 1288.4 | 880.6 | 40/19 |
85 | 1303.8 | 891.1 | |
86 | 1319.1 | 901.6 | 15/7 |
87 | 1334.4 | 912.1 | |
88 | 1349.8 | 922.6 | |
89 | 1365.1 | 933.1 | 11/5 |
90 | 1380.5 | 943.5 | 51/23 |
91 | 1395.8 | 954 | 47/21 |
92 | 1411.1 | 964.5 | |
93 | 1426.5 | 975 | 41/18 |
94 | 1441.8 | 985.5 | 23/10 |
95 | 1457.1 | 996 | 51/22 |
96 | 1472.5 | 1006.5 | |
97 | 1487.8 | 1016.9 | 26/11 |
98 | 1503.2 | 1027.4 | 31/13, 50/21 |
99 | 1518.5 | 1037.9 | |
100 | 1533.8 | 1048.4 | |
101 | 1549.2 | 1058.9 | 22/9 |
102 | 1564.5 | 1069.4 | 37/15, 42/17 |
103 | 1579.8 | 1079.8 | |
104 | 1595.2 | 1090.3 | |
105 | 1610.5 | 1100.8 | |
106 | 1625.9 | 1111.3 | 23/9 |
107 | 1641.2 | 1121.8 | |
108 | 1656.5 | 1132.3 | |
109 | 1671.9 | 1142.7 | |
110 | 1687.2 | 1153.2 | |
111 | 1702.6 | 1163.7 | |
112 | 1717.9 | 1174.2 | 27/10 |
113 | 1733.2 | 1184.7 | |
114 | 1748.6 | 1195.2 | |
115 | 1763.9 | 1205.6 | |
116 | 1779.2 | 1216.1 | |
117 | 1794.6 | 1226.6 | 31/11 |
118 | 1809.9 | 1237.1 | 37/13 |
119 | 1825.3 | 1247.6 | |
120 | 1840.6 | 1258.1 | |
121 | 1855.9 | 1268.5 | |
122 | 1871.3 | 1279 | |
123 | 1886.6 | 1289.5 | |
124 | 1902 | 1300 | 3/1 |