123edt
Jump to navigation
Jump to search
Prime factorization
3 × 41
Step size
15.463¢
Octave
78\123edt (1206.12¢) (→26\41edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 122edt | 123edt | 124edt → |
123 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 123edt or 123ed3), is a nonoctave tuning system that divides the interval of 3/1 into 123 equal parts of about 15.5 ¢ each. Each step represents a frequency ratio of 31/123, or the 123rd root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.5 | |
2 | 30.9 | |
3 | 46.4 | |
4 | 61.9 | |
5 | 77.3 | 23/22, 45/43 |
6 | 92.8 | 19/18, 39/37 |
7 | 108.2 | 33/31, 49/46, 50/47 |
8 | 123.7 | 29/27, 44/41 |
9 | 139.2 | |
10 | 154.6 | 47/43 |
11 | 170.1 | 43/39 |
12 | 185.6 | 39/35, 49/44 |
13 | 201 | 46/41 |
14 | 216.5 | 17/15 |
15 | 231.9 | |
16 | 247.4 | 15/13 |
17 | 262.9 | 50/43 |
18 | 278.3 | 27/23 |
19 | 293.8 | |
20 | 309.3 | 49/41 |
21 | 324.7 | 35/29, 41/34, 47/39 |
22 | 340.2 | 45/37 |
23 | 355.7 | 27/22, 43/35 |
24 | 371.1 | 26/21, 31/25 |
25 | 386.6 | |
26 | 402 | 29/23 |
27 | 417.5 | |
28 | 433 | |
29 | 448.4 | 35/27 |
30 | 463.9 | 17/13 |
31 | 479.4 | 29/22, 33/25 |
32 | 494.8 | |
33 | 510.3 | 47/35 |
34 | 525.7 | |
35 | 541.2 | 26/19, 41/30 |
36 | 556.7 | |
37 | 572.1 | |
38 | 587.6 | |
39 | 603.1 | |
40 | 618.5 | 10/7 |
41 | 634 | 49/34 |
42 | 649.4 | |
43 | 664.9 | 22/15 |
44 | 680.4 | 37/25, 43/29 |
45 | 695.8 | |
46 | 711.3 | |
47 | 726.8 | 35/23 |
48 | 742.2 | |
49 | 757.7 | |
50 | 773.2 | |
51 | 788.6 | 41/26 |
52 | 804.1 | 35/22, 43/27 |
53 | 819.5 | |
54 | 835 | 34/21, 47/29 |
55 | 850.5 | 49/30 |
56 | 865.9 | |
57 | 881.4 | |
58 | 896.9 | |
59 | 912.3 | 22/13, 39/23 |
60 | 927.8 | |
61 | 943.2 | 50/29 |
62 | 958.7 | 47/27 |
63 | 974.2 | |
64 | 989.6 | 23/13, 39/22 |
65 | 1005.1 | |
66 | 1020.6 | |
67 | 1036 | |
68 | 1051.5 | |
69 | 1067 | 50/27 |
70 | 1082.4 | 43/23 |
71 | 1097.9 | 49/26 |
72 | 1113.3 | |
73 | 1128.8 | |
74 | 1144.3 | |
75 | 1159.7 | 41/21, 43/22 |
76 | 1175.2 | |
77 | 1190.7 | |
78 | 1206.1 | |
79 | 1221.6 | |
80 | 1237 | 45/22, 47/23 |
81 | 1252.5 | |
82 | 1268 | |
83 | 1283.4 | 21/10 |
84 | 1298.9 | |
85 | 1314.4 | 47/22 |
86 | 1329.8 | 41/19 |
87 | 1345.3 | 37/17, 50/23 |
88 | 1360.7 | |
89 | 1376.2 | |
90 | 1391.7 | |
91 | 1407.1 | |
92 | 1422.6 | 25/11 |
93 | 1438.1 | 39/17 |
94 | 1453.5 | 44/19 |
95 | 1469 | |
96 | 1484.5 | |
97 | 1499.9 | 50/21 |
98 | 1515.4 | |
99 | 1530.8 | 46/19 |
100 | 1546.3 | 22/9 |
101 | 1561.8 | 37/15 |
102 | 1577.2 | |
103 | 1592.7 | |
104 | 1608.2 | 43/17 |
105 | 1623.6 | 23/9 |
106 | 1639.1 | 49/19 |
107 | 1654.5 | 13/5 |
108 | 1670 | |
109 | 1685.5 | 45/17 |
110 | 1700.9 | |
111 | 1716.4 | 35/13 |
112 | 1731.9 | 49/18 |
113 | 1747.3 | |
114 | 1762.8 | |
115 | 1778.3 | |
116 | 1793.7 | 31/11 |
117 | 1809.2 | 37/13 |
118 | 1824.6 | 43/15 |
119 | 1840.1 | |
120 | 1855.6 | |
121 | 1871 | |
122 | 1886.5 | |
123 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +6.12 | +0.00 | -3.23 | -2.96 | +6.12 | +2.12 | +2.89 | +0.00 | +3.15 | -7.22 | -3.23 |
Relative (%) | +39.6 | +0.0 | -20.9 | -19.2 | +39.6 | +13.7 | +18.7 | +0.0 | +20.4 | -46.7 | -20.9 | |
Steps (reduced) |
78 (78) |
123 (0) |
155 (32) |
180 (57) |
201 (78) |
218 (95) |
233 (110) |
246 (0) |
258 (12) |
268 (22) |
278 (32) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -7.23 | -2.96 | -6.45 | -3.17 | +6.12 | +5.29 | -6.19 | +2.12 | -1.10 | -0.74 |
Relative (%) | -17.0 | -46.7 | -19.2 | -41.7 | -20.5 | +39.6 | +34.2 | -40.0 | +13.7 | -7.1 | -4.8 | |
Steps (reduced) |
287 (41) |
295 (49) |
303 (57) |
310 (64) |
317 (71) |
324 (78) |
330 (84) |
335 (89) |
341 (95) |
346 (100) |
351 (105) |