123edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 122edt123edt124edt →
Prime factorization 3 × 41
Step size 15.463¢ 
Octave 78\123edt (1206.12¢) (→26\41edt)
Consistency limit 2
Distinct consistency limit 2

123 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 123edt or 123ed3), is a nonoctave tuning system that divides the interval of 3/1 into 123 equal parts of about 15.5 ¢ each. Each step represents a frequency ratio of 31/123, or the 123rd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 15.463
2 30.926
3 46.389
4 61.852
5 77.315 23/22, 45/43
6 92.778 19/18, 39/37
7 108.241 33/31, 49/46, 50/47
8 123.704 29/27, 44/41
9 139.167
10 154.63 47/43
11 170.094 43/39
12 185.557 39/35, 49/44
13 201.02 46/41
14 216.483 17/15
15 231.946
16 247.409 15/13
17 262.872 50/43
18 278.335 27/23
19 293.798
20 309.261 49/41
21 324.724 35/29, 41/34, 47/39
22 340.187 45/37
23 355.65 27/22, 43/35
24 371.113 26/21, 31/25
25 386.576
26 402.039 29/23
27 417.502
28 432.965
29 448.428 35/27
30 463.891 17/13
31 479.355 29/22, 33/25
32 494.818
33 510.281 47/35
34 525.744
35 541.207 26/19, 41/30
36 556.67
37 572.133
38 587.596
39 603.059
40 618.522 10/7
41 633.985 49/34
42 649.448
43 664.911 22/15
44 680.374 37/25, 43/29
45 695.837
46 711.3
47 726.763 35/23
48 742.226
49 757.689
50 773.152
51 788.615 41/26
52 804.079 35/22, 43/27
53 819.542
54 835.005 34/21, 47/29
55 850.468 49/30
56 865.931
57 881.394
58 896.857
59 912.32 22/13, 39/23
60 927.783
61 943.246 50/29
62 958.709 47/27
63 974.172
64 989.635 23/13, 39/22
65 1005.098
66 1020.561
67 1036.024
68 1051.487
69 1066.95 50/27
70 1082.413 43/23
71 1097.876 49/26
72 1113.34
73 1128.803
74 1144.266
75 1159.729 41/21, 43/22
76 1175.192
77 1190.655
78 1206.118
79 1221.581
80 1237.044 45/22, 47/23
81 1252.507
82 1267.97
83 1283.433 21/10
84 1298.896
85 1314.359 47/22
86 1329.822 41/19
87 1345.285 37/17, 50/23
88 1360.748
89 1376.211
90 1391.674
91 1407.137
92 1422.6 25/11
93 1438.064 39/17
94 1453.527 44/19
95 1468.99
96 1484.453
97 1499.916 50/21
98 1515.379
99 1530.842 46/19
100 1546.305 22/9
101 1561.768 37/15
102 1577.231
103 1592.694
104 1608.157 43/17
105 1623.62 23/9
106 1639.083 49/19
107 1654.546 13/5
108 1670.009
109 1685.472 45/17
110 1700.935
111 1716.398 35/13
112 1731.861 49/18
113 1747.325
114 1762.788
115 1778.251
116 1793.714 31/11
117 1809.177 37/13
118 1824.64 43/15
119 1840.103
120 1855.566
121 1871.029
122 1886.492
123 1901.955 3/1

Harmonics

Approximation of harmonics in 123edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.12 +0.00 -3.23 -2.96 +6.12 +2.12 +2.89 +0.00 +3.15 -7.22 -3.23
Relative (%) +39.6 +0.0 -20.9 -19.2 +39.6 +13.7 +18.7 +0.0 +20.4 -46.7 -20.9
Steps
(reduced)
78
(78)
123
(0)
155
(32)
180
(57)
201
(78)
218
(95)
233
(110)
246
(0)
258
(12)
268
(22)
278
(32)
Approximation of harmonics in 123edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -7.23 -2.96 -6.45 -3.17 +6.12 +5.29 -6.19 +2.12 -1.10 -0.74
Relative (%) -17.0 -46.7 -19.2 -41.7 -20.5 +39.6 +34.2 -40.0 +13.7 -7.1 -4.8
Steps
(reduced)
287
(41)
295
(49)
303
(57)
310
(64)
317
(71)
324
(78)
330
(84)
335
(89)
341
(95)
346
(100)
351
(105)