123edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 122edt 123edt 124edt →
Prime factorization 3 × 41
Step size 15.463¢ 
Octave 78\123edt (1206.12¢) (→26\41edt)
Consistency limit 2
Distinct consistency limit 2

123 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 123edt or 123ed3), is a nonoctave tuning system that divides the interval of 3/1 into 123 equal parts of about 15.5⁠ ⁠¢ each. Each step represents a frequency ratio of 31/123, or the 123rd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15.5 10.6
2 30.9 21.1
3 46.4 31.7
4 61.9 42.3
5 77.3 52.8 23/22, 45/43
6 92.8 63.4 19/18, 39/37
7 108.2 74 33/31, 49/46, 50/47
8 123.7 84.6 29/27, 44/41
9 139.2 95.1
10 154.6 105.7 47/43
11 170.1 116.3 43/39
12 185.6 126.8 39/35, 49/44
13 201 137.4 46/41
14 216.5 148 17/15
15 231.9 158.5
16 247.4 169.1 15/13
17 262.9 179.7 50/43
18 278.3 190.2 27/23
19 293.8 200.8
20 309.3 211.4 49/41
21 324.7 222 35/29, 41/34, 47/39
22 340.2 232.5 45/37
23 355.7 243.1 27/22, 43/35
24 371.1 253.7 26/21, 31/25
25 386.6 264.2
26 402 274.8 29/23
27 417.5 285.4
28 433 295.9
29 448.4 306.5 35/27
30 463.9 317.1 17/13
31 479.4 327.6 29/22, 33/25
32 494.8 338.2
33 510.3 348.8 47/35
34 525.7 359.3
35 541.2 369.9 26/19, 41/30
36 556.7 380.5
37 572.1 391.1
38 587.6 401.6
39 603.1 412.2
40 618.5 422.8 10/7
41 634 433.3 49/34
42 649.4 443.9
43 664.9 454.5 22/15
44 680.4 465 37/25, 43/29
45 695.8 475.6
46 711.3 486.2
47 726.8 496.7 35/23
48 742.2 507.3
49 757.7 517.9
50 773.2 528.5
51 788.6 539 41/26
52 804.1 549.6 35/22, 43/27
53 819.5 560.2
54 835 570.7 34/21, 47/29
55 850.5 581.3 49/30
56 865.9 591.9
57 881.4 602.4
58 896.9 613
59 912.3 623.6 22/13, 39/23
60 927.8 634.1
61 943.2 644.7 50/29
62 958.7 655.3 47/27
63 974.2 665.9
64 989.6 676.4 23/13, 39/22
65 1005.1 687
66 1020.6 697.6
67 1036 708.1
68 1051.5 718.7
69 1067 729.3 50/27
70 1082.4 739.8 43/23
71 1097.9 750.4 49/26
72 1113.3 761
73 1128.8 771.5
74 1144.3 782.1
75 1159.7 792.7 41/21, 43/22
76 1175.2 803.3
77 1190.7 813.8
78 1206.1 824.4
79 1221.6 835
80 1237 845.5 45/22, 47/23
81 1252.5 856.1
82 1268 866.7
83 1283.4 877.2 21/10
84 1298.9 887.8
85 1314.4 898.4 47/22
86 1329.8 908.9 41/19
87 1345.3 919.5 37/17, 50/23
88 1360.7 930.1
89 1376.2 940.7
90 1391.7 951.2
91 1407.1 961.8
92 1422.6 972.4 25/11
93 1438.1 982.9 39/17
94 1453.5 993.5 44/19
95 1469 1004.1
96 1484.5 1014.6
97 1499.9 1025.2 50/21
98 1515.4 1035.8
99 1530.8 1046.3 46/19
100 1546.3 1056.9 22/9
101 1561.8 1067.5 37/15
102 1577.2 1078
103 1592.7 1088.6
104 1608.2 1099.2 43/17
105 1623.6 1109.8 23/9
106 1639.1 1120.3 49/19
107 1654.5 1130.9 13/5
108 1670 1141.5
109 1685.5 1152 45/17
110 1700.9 1162.6
111 1716.4 1173.2 35/13
112 1731.9 1183.7 49/18
113 1747.3 1194.3
114 1762.8 1204.9
115 1778.3 1215.4
116 1793.7 1226 31/11
117 1809.2 1236.6 37/13
118 1824.6 1247.2 43/15
119 1840.1 1257.7
120 1855.6 1268.3
121 1871 1278.9
122 1886.5 1289.4
123 1902 1300 3/1

Harmonics

Approximation of harmonics in 123edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +6.12 +0.00 -3.23 -2.96 +6.12 +2.12 +2.89 +0.00 +3.15 -7.22 -3.23
Relative (%) +39.6 +0.0 -20.9 -19.2 +39.6 +13.7 +18.7 +0.0 +20.4 -46.7 -20.9
Steps
(reduced)
78
(78)
123
(0)
155
(32)
180
(57)
201
(78)
218
(95)
233
(110)
246
(0)
258
(12)
268
(22)
278
(32)
Approximation of harmonics in 123edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -7.23 -2.96 -6.45 -3.17 +6.12 +5.29 -6.19 +2.12 -1.10 -0.74
Relative (%) -17.0 -46.7 -19.2 -41.7 -20.5 +39.6 +34.2 -40.0 +13.7 -7.1 -4.8
Steps
(reduced)
287
(41)
295
(49)
303
(57)
310
(64)
317
(71)
324
(78)
330
(84)
335
(89)
341
(95)
346
(100)
351
(105)