122edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 121edt122edt123edt →
Prime factorization 2 × 61
Step size 15.5898¢ 
Octave 77\122edt (1200.41¢)
Consistency limit 10
Distinct consistency limit 10

122 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 122edt or 122ed3), is a nonoctave tuning system that divides the interval of 3/1 into 122 equal parts of about 15.6 ¢ each. Each step represents a frequency ratio of 31/122, or the 122nd root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 15.59
2 31.18
3 46.769 37/36, 38/37, 39/38
4 62.359 28/27, 29/28
5 77.949 23/22, 45/43
6 93.539 19/18
7 109.129 33/31, 49/46
8 124.718 29/27, 43/40
9 140.308 13/12
10 155.898 23/21, 35/32, 47/43
11 171.488 21/19, 32/29
12 187.078 39/35, 49/44
13 202.667 9/8
14 218.257 17/15, 42/37
15 233.847
16 249.437 15/13, 37/32
17 265.027 7/6
18 280.616 20/17, 47/40
19 296.206 19/16
20 311.796
21 327.386 29/24, 35/29
22 342.975 39/32
23 358.565 16/13
24 374.155 36/29, 41/33
25 389.745
26 405.335 24/19, 43/34
27 420.924 37/29
28 436.514 9/7
29 452.104 48/37
30 467.694 38/29
31 483.284 37/28, 41/31
32 498.873 4/3
33 514.463 35/26, 39/29
34 530.053 19/14
35 545.643 37/27, 48/35
36 561.233 47/34
37 576.822 46/33
38 592.412 31/22, 38/27
39 608.002 27/19, 44/31
40 623.592 33/23, 43/30
41 639.182
42 654.771 35/24
43 670.361 28/19
44 685.951 49/33
45 701.541 3/2
46 717.131
47 732.72 29/19
48 748.31 37/24
49 763.9 14/9
50 779.49
51 795.08 19/12
52 810.669
53 826.259 29/18
54 841.849 13/8
55 857.439
56 873.029 48/29
57 888.618
58 904.208 27/16, 32/19
59 919.798 17/10
60 935.388
61 950.978 26/15, 45/26
62 966.567
63 982.157 30/17, 37/21
64 997.747 16/9
65 1013.337
66 1028.926 29/16
67 1044.516
68 1060.106 24/13
69 1075.696
70 1091.286 47/25
71 1106.875 36/19
72 1122.465 44/23
73 1138.055 27/14
74 1153.645 37/19
75 1169.235
76 1184.824
77 1200.414 2/1
78 1216.004
79 1231.594
80 1247.184 37/18
81 1262.773
82 1278.363 23/11
83 1293.953 19/9
84 1309.543 49/23
85 1325.133 43/20
86 1340.722
87 1356.312 35/16, 46/21
88 1371.902 42/19
89 1387.492 29/13, 49/22
90 1403.082 9/4
91 1418.671
92 1434.261
93 1449.851 37/16
94 1465.441 7/3
95 1481.031 40/17, 47/20
96 1496.62 19/8
97 1512.21
98 1527.8 29/12
99 1543.39 39/16
100 1558.98 32/13
101 1574.569
102 1590.159
103 1605.749 43/17, 48/19
104 1621.339
105 1636.928 18/7
106 1652.518 13/5
107 1668.108
108 1683.698 37/14, 45/17
109 1699.288 8/3
110 1714.877 35/13
111 1730.467 19/7
112 1746.057
113 1761.647 36/13, 47/17
114 1777.237
115 1792.826 31/11
116 1808.416
117 1824.006 43/15
118 1839.596
119 1855.186 38/13
120 1870.775
121 1886.365
122 1901.955 3/1

Harmonics

Approximation of harmonics in 122edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.41 +0.00 +0.83 +4.26 +0.41 -1.43 +1.24 +0.00 +4.67 -4.43 +0.83
Relative (%) +2.7 +0.0 +5.3 +27.3 +2.7 -9.2 +8.0 +0.0 +30.0 -28.4 +5.3
Steps
(reduced)
77
(77)
122
(0)
154
(32)
179
(57)
199
(77)
216
(94)
231
(109)
244
(0)
256
(12)
266
(22)
276
(32)
Approximation of harmonics in 122edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.56 -1.02 +4.26 +1.66 +5.83 +0.41 +0.35 +5.09 -1.43 -4.02 -3.03
Relative (%) +16.4 -6.5 +27.3 +10.6 +37.4 +2.7 +2.2 +32.6 -9.2 -25.8 -19.4
Steps
(reduced)
285
(41)
293
(49)
301
(57)
308
(64)
315
(71)
321
(77)
327
(83)
333
(89)
338
(94)
343
(99)
348
(104)