122edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 121edt 122edt 123edt →
Prime factorization 2 × 61
Step size 15.5898¢ 
Octave 77\122edt (1200.41¢)
Consistency limit 10
Distinct consistency limit 10

122 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 122edt or 122ed3), is a nonoctave tuning system that divides the interval of 3/1 into 122 equal parts of about 15.6⁠ ⁠¢ each. Each step represents a frequency ratio of 31/122, or the 122nd root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15.6 10.7
2 31.2 21.3
3 46.8 32 37/36, 38/37, 39/38
4 62.4 42.6 28/27, 29/28
5 77.9 53.3 23/22, 45/43
6 93.5 63.9 19/18
7 109.1 74.6 33/31, 49/46
8 124.7 85.2 29/27, 43/40
9 140.3 95.9 13/12
10 155.9 106.6 23/21, 35/32, 47/43
11 171.5 117.2 21/19, 32/29
12 187.1 127.9 39/35, 49/44
13 202.7 138.5 9/8
14 218.3 149.2 17/15, 42/37
15 233.8 159.8
16 249.4 170.5 15/13, 37/32
17 265 181.1 7/6
18 280.6 191.8 20/17, 47/40
19 296.2 202.5 19/16
20 311.8 213.1
21 327.4 223.8 29/24, 35/29
22 343 234.4 39/32
23 358.6 245.1 16/13
24 374.2 255.7 36/29, 41/33
25 389.7 266.4
26 405.3 277 24/19, 43/34
27 420.9 287.7 37/29
28 436.5 298.4 9/7
29 452.1 309 48/37
30 467.7 319.7 38/29
31 483.3 330.3 37/28, 41/31
32 498.9 341 4/3
33 514.5 351.6 35/26, 39/29
34 530.1 362.3 19/14
35 545.6 373 37/27, 48/35
36 561.2 383.6 47/34
37 576.8 394.3 46/33
38 592.4 404.9 31/22, 38/27
39 608 415.6 27/19, 44/31
40 623.6 426.2 33/23, 43/30
41 639.2 436.9
42 654.8 447.5 35/24
43 670.4 458.2 28/19
44 686 468.9 49/33
45 701.5 479.5 3/2
46 717.1 490.2
47 732.7 500.8 29/19
48 748.3 511.5 37/24
49 763.9 522.1 14/9
50 779.5 532.8
51 795.1 543.4 19/12
52 810.7 554.1
53 826.3 564.8 29/18
54 841.8 575.4 13/8
55 857.4 586.1
56 873 596.7 48/29
57 888.6 607.4
58 904.2 618 27/16, 32/19
59 919.8 628.7 17/10
60 935.4 639.3
61 951 650 26/15, 45/26
62 966.6 660.7
63 982.2 671.3 30/17, 37/21
64 997.7 682 16/9
65 1013.3 692.6
66 1028.9 703.3 29/16
67 1044.5 713.9
68 1060.1 724.6 24/13
69 1075.7 735.2
70 1091.3 745.9 47/25
71 1106.9 756.6 36/19
72 1122.5 767.2 44/23
73 1138.1 777.9 27/14
74 1153.6 788.5 37/19
75 1169.2 799.2
76 1184.8 809.8
77 1200.4 820.5 2/1
78 1216 831.1
79 1231.6 841.8
80 1247.2 852.5 37/18
81 1262.8 863.1
82 1278.4 873.8 23/11
83 1294 884.4 19/9
84 1309.5 895.1 49/23
85 1325.1 905.7 43/20
86 1340.7 916.4
87 1356.3 927 35/16, 46/21
88 1371.9 937.7 42/19
89 1387.5 948.4 29/13, 49/22
90 1403.1 959 9/4
91 1418.7 969.7
92 1434.3 980.3
93 1449.9 991 37/16
94 1465.4 1001.6 7/3
95 1481 1012.3 40/17, 47/20
96 1496.6 1023 19/8
97 1512.2 1033.6
98 1527.8 1044.3 29/12
99 1543.4 1054.9 39/16
100 1559 1065.6 32/13
101 1574.6 1076.2
102 1590.2 1086.9
103 1605.7 1097.5 43/17, 48/19
104 1621.3 1108.2
105 1636.9 1118.9 18/7
106 1652.5 1129.5 13/5
107 1668.1 1140.2
108 1683.7 1150.8 37/14, 45/17
109 1699.3 1161.5 8/3
110 1714.9 1172.1 35/13
111 1730.5 1182.8 19/7
112 1746.1 1193.4
113 1761.6 1204.1 36/13, 47/17
114 1777.2 1214.8
115 1792.8 1225.4 31/11
116 1808.4 1236.1
117 1824 1246.7 43/15
118 1839.6 1257.4
119 1855.2 1268 38/13
120 1870.8 1278.7
121 1886.4 1289.3
122 1902 1300 3/1

Harmonics

Approximation of harmonics in 122edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.41 +0.00 +0.83 +4.26 +0.41 -1.43 +1.24 +0.00 +4.67 -4.43 +0.83
Relative (%) +2.7 +0.0 +5.3 +27.3 +2.7 -9.2 +8.0 +0.0 +30.0 -28.4 +5.3
Steps
(reduced)
77
(77)
122
(0)
154
(32)
179
(57)
199
(77)
216
(94)
231
(109)
244
(0)
256
(12)
266
(22)
276
(32)
Approximation of harmonics in 122edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.56 -1.02 +4.26 +1.66 +5.83 +0.41 +0.35 +5.09 -1.43 -4.02 -3.03
Relative (%) +16.4 -6.5 +27.3 +10.6 +37.4 +2.7 +2.2 +32.6 -9.2 -25.8 -19.4
Steps
(reduced)
285
(41)
293
(49)
301
(57)
308
(64)
315
(71)
321
(77)
327
(83)
333
(89)
338
(94)
343
(99)
348
(104)