122edt
Jump to navigation
Jump to search
Prime factorization
2 × 61
Step size
15.5898¢
Octave
77\122edt (1200.41¢)
Consistency limit
10
Distinct consistency limit
10
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 121edt | 122edt | 123edt → |
122 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 122edt or 122ed3), is a nonoctave tuning system that divides the interval of 3/1 into 122 equal parts of about 15.6 ¢ each. Each step represents a frequency ratio of 31/122, or the 122nd root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 15.6 | 10.7 | |
2 | 31.2 | 21.3 | |
3 | 46.8 | 32 | 37/36, 38/37, 39/38 |
4 | 62.4 | 42.6 | 28/27, 29/28 |
5 | 77.9 | 53.3 | 23/22, 45/43 |
6 | 93.5 | 63.9 | 19/18 |
7 | 109.1 | 74.6 | 33/31, 49/46 |
8 | 124.7 | 85.2 | 29/27, 43/40 |
9 | 140.3 | 95.9 | 13/12 |
10 | 155.9 | 106.6 | 23/21, 35/32, 47/43 |
11 | 171.5 | 117.2 | 21/19, 32/29 |
12 | 187.1 | 127.9 | 39/35, 49/44 |
13 | 202.7 | 138.5 | 9/8 |
14 | 218.3 | 149.2 | 17/15, 42/37 |
15 | 233.8 | 159.8 | |
16 | 249.4 | 170.5 | 15/13, 37/32 |
17 | 265 | 181.1 | 7/6 |
18 | 280.6 | 191.8 | 20/17, 47/40 |
19 | 296.2 | 202.5 | 19/16 |
20 | 311.8 | 213.1 | |
21 | 327.4 | 223.8 | 29/24, 35/29 |
22 | 343 | 234.4 | 39/32 |
23 | 358.6 | 245.1 | 16/13 |
24 | 374.2 | 255.7 | 36/29, 41/33 |
25 | 389.7 | 266.4 | |
26 | 405.3 | 277 | 24/19, 43/34 |
27 | 420.9 | 287.7 | 37/29 |
28 | 436.5 | 298.4 | 9/7 |
29 | 452.1 | 309 | 48/37 |
30 | 467.7 | 319.7 | 38/29 |
31 | 483.3 | 330.3 | 37/28, 41/31 |
32 | 498.9 | 341 | 4/3 |
33 | 514.5 | 351.6 | 35/26, 39/29 |
34 | 530.1 | 362.3 | 19/14 |
35 | 545.6 | 373 | 37/27, 48/35 |
36 | 561.2 | 383.6 | 47/34 |
37 | 576.8 | 394.3 | 46/33 |
38 | 592.4 | 404.9 | 31/22, 38/27 |
39 | 608 | 415.6 | 27/19, 44/31 |
40 | 623.6 | 426.2 | 33/23, 43/30 |
41 | 639.2 | 436.9 | |
42 | 654.8 | 447.5 | 35/24 |
43 | 670.4 | 458.2 | 28/19 |
44 | 686 | 468.9 | 49/33 |
45 | 701.5 | 479.5 | 3/2 |
46 | 717.1 | 490.2 | |
47 | 732.7 | 500.8 | 29/19 |
48 | 748.3 | 511.5 | 37/24 |
49 | 763.9 | 522.1 | 14/9 |
50 | 779.5 | 532.8 | |
51 | 795.1 | 543.4 | 19/12 |
52 | 810.7 | 554.1 | |
53 | 826.3 | 564.8 | 29/18 |
54 | 841.8 | 575.4 | 13/8 |
55 | 857.4 | 586.1 | |
56 | 873 | 596.7 | 48/29 |
57 | 888.6 | 607.4 | |
58 | 904.2 | 618 | 27/16, 32/19 |
59 | 919.8 | 628.7 | 17/10 |
60 | 935.4 | 639.3 | |
61 | 951 | 650 | 26/15, 45/26 |
62 | 966.6 | 660.7 | |
63 | 982.2 | 671.3 | 30/17, 37/21 |
64 | 997.7 | 682 | 16/9 |
65 | 1013.3 | 692.6 | |
66 | 1028.9 | 703.3 | 29/16 |
67 | 1044.5 | 713.9 | |
68 | 1060.1 | 724.6 | 24/13 |
69 | 1075.7 | 735.2 | |
70 | 1091.3 | 745.9 | 47/25 |
71 | 1106.9 | 756.6 | 36/19 |
72 | 1122.5 | 767.2 | 44/23 |
73 | 1138.1 | 777.9 | 27/14 |
74 | 1153.6 | 788.5 | 37/19 |
75 | 1169.2 | 799.2 | |
76 | 1184.8 | 809.8 | |
77 | 1200.4 | 820.5 | 2/1 |
78 | 1216 | 831.1 | |
79 | 1231.6 | 841.8 | |
80 | 1247.2 | 852.5 | 37/18 |
81 | 1262.8 | 863.1 | |
82 | 1278.4 | 873.8 | 23/11 |
83 | 1294 | 884.4 | 19/9 |
84 | 1309.5 | 895.1 | 49/23 |
85 | 1325.1 | 905.7 | 43/20 |
86 | 1340.7 | 916.4 | |
87 | 1356.3 | 927 | 35/16, 46/21 |
88 | 1371.9 | 937.7 | 42/19 |
89 | 1387.5 | 948.4 | 29/13, 49/22 |
90 | 1403.1 | 959 | 9/4 |
91 | 1418.7 | 969.7 | |
92 | 1434.3 | 980.3 | |
93 | 1449.9 | 991 | 37/16 |
94 | 1465.4 | 1001.6 | 7/3 |
95 | 1481 | 1012.3 | 40/17, 47/20 |
96 | 1496.6 | 1023 | 19/8 |
97 | 1512.2 | 1033.6 | |
98 | 1527.8 | 1044.3 | 29/12 |
99 | 1543.4 | 1054.9 | 39/16 |
100 | 1559 | 1065.6 | 32/13 |
101 | 1574.6 | 1076.2 | |
102 | 1590.2 | 1086.9 | |
103 | 1605.7 | 1097.5 | 43/17, 48/19 |
104 | 1621.3 | 1108.2 | |
105 | 1636.9 | 1118.9 | 18/7 |
106 | 1652.5 | 1129.5 | 13/5 |
107 | 1668.1 | 1140.2 | |
108 | 1683.7 | 1150.8 | 37/14, 45/17 |
109 | 1699.3 | 1161.5 | 8/3 |
110 | 1714.9 | 1172.1 | 35/13 |
111 | 1730.5 | 1182.8 | 19/7 |
112 | 1746.1 | 1193.4 | |
113 | 1761.6 | 1204.1 | 36/13, 47/17 |
114 | 1777.2 | 1214.8 | |
115 | 1792.8 | 1225.4 | 31/11 |
116 | 1808.4 | 1236.1 | |
117 | 1824 | 1246.7 | 43/15 |
118 | 1839.6 | 1257.4 | |
119 | 1855.2 | 1268 | 38/13 |
120 | 1870.8 | 1278.7 | |
121 | 1886.4 | 1289.3 | |
122 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.41 | +0.00 | +0.83 | +4.26 | +0.41 | -1.43 | +1.24 | +0.00 | +4.67 | -4.43 | +0.83 |
Relative (%) | +2.7 | +0.0 | +5.3 | +27.3 | +2.7 | -9.2 | +8.0 | +0.0 | +30.0 | -28.4 | +5.3 | |
Steps (reduced) |
77 (77) |
122 (0) |
154 (32) |
179 (57) |
199 (77) |
216 (94) |
231 (109) |
244 (0) |
256 (12) |
266 (22) |
276 (32) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.56 | -1.02 | +4.26 | +1.66 | +5.83 | +0.41 | +0.35 | +5.09 | -1.43 | -4.02 | -3.03 |
Relative (%) | +16.4 | -6.5 | +27.3 | +10.6 | +37.4 | +2.7 | +2.2 | +32.6 | -9.2 | -25.8 | -19.4 | |
Steps (reduced) |
285 (41) |
293 (49) |
301 (57) |
308 (64) |
315 (71) |
321 (77) |
327 (83) |
333 (89) |
338 (94) |
343 (99) |
348 (104) |