121edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 120edt 121edt 122edt →
Prime factorization 112
Step size 15.7186¢ 
Octave 76\121edt (1194.62¢)
Consistency limit 2
Distinct consistency limit 2

121 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 121edt or 121ed3), is a nonoctave tuning system that divides the interval of 3/1 into 121 equal parts of about 15.7⁠ ⁠¢ each. Each step represents a frequency ratio of 31/121, or the 121st root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15.7 10.7
2 31.4 21.5
3 47.2 32.2 36/35
4 62.9 43
5 78.6 53.7 22/21, 23/22, 45/43
6 94.3 64.5 19/18
7 110 75.2 33/31, 49/46
8 125.7 86
9 141.5 96.7 38/35
10 157.2 107.4 23/21
11 172.9 118.2 21/19
12 188.6 128.9 29/26
13 204.3 139.7
14 220.1 150.4 25/22
15 235.8 161.2 47/41
16 251.5 171.9
17 267.2 182.6 7/6
18 282.9 193.4
19 298.7 204.1
20 314.4 214.9 6/5
21 330.1 225.6 23/19
22 345.8 236.4 11/9
23 361.5 247.1
24 377.2 257.9 41/33
25 393 268.6
26 408.7 279.3 19/15
27 424.4 290.1 23/18
28 440.1 300.8 49/38
29 455.8 311.6
30 471.6 322.3 46/35
31 487.3 333.1
32 503 343.8
33 518.7 354.5 31/23
34 534.4 365.3 49/36
35 550.2 376
36 565.9 386.8 43/31
37 581.6 397.5 7/5
38 597.3 408.3
39 613 419 47/33
40 628.7 429.8
41 644.5 440.5 45/31
42 660.2 451.2
43 675.9 462 31/21, 34/23
44 691.6 472.7
45 707.3 483.5
46 723.1 494.2 38/25, 41/27
47 738.8 505 23/15
48 754.5 515.7 17/11
49 770.2 526.4
50 785.9 537.2
51 801.7 547.9 27/17
52 817.4 558.7
53 833.1 569.4 34/21
54 848.8 580.2 31/19, 49/30
55 864.5 590.9
56 880.2 601.7
57 896 612.4
58 911.7 623.1
59 927.4 633.9
60 943.1 644.6
61 958.8 655.4 47/27
62 974.6 666.1
63 990.3 676.9
64 1006 687.6 34/19
65 1021.7 698.3
66 1037.4 709.1
67 1053.1 719.8
68 1068.9 730.6
69 1084.6 741.3 43/23
70 1100.3 752.1 17/9
71 1116 762.8
72 1131.7 773.6
73 1147.5 784.3 33/17
74 1163.2 795 45/23, 49/25
75 1178.9 805.8
76 1194.6 816.5
77 1210.3 827.3
78 1226.1 838
79 1241.8 848.8 43/21
80 1257.5 859.5 31/15
81 1273.2 870.2
82 1288.9 881
83 1304.6 891.7
84 1320.4 902.5 15/7
85 1336.1 913.2
86 1351.8 924
87 1367.5 934.7
88 1383.2 945.5
89 1399 956.2
90 1414.7 966.9 43/19
91 1430.4 977.7
92 1446.1 988.4
93 1461.8 999.2
94 1477.6 1009.9
95 1493.3 1020.7 45/19
96 1509 1031.4 43/18
97 1524.7 1042.1 41/17
98 1540.4 1052.9
99 1556.1 1063.6 27/11
100 1571.9 1074.4
101 1587.6 1085.1 5/2
102 1603.3 1095.9
103 1619 1106.6
104 1634.7 1117.4 18/7
105 1650.5 1128.1
106 1666.2 1138.8
107 1681.9 1149.6
108 1697.6 1160.3
109 1713.3 1171.1
110 1729.1 1181.8 19/7
111 1744.8 1192.6
112 1760.5 1203.3 47/17
113 1776.2 1214
114 1791.9 1224.8 31/11
115 1807.6 1235.5
116 1823.4 1246.3 43/15
117 1839.1 1257
118 1854.8 1267.8 35/12
119 1870.5 1278.5
120 1886.2 1289.3
121 1902 1300 3/1

Harmonics

Approximation of harmonics in 121edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.38 +0.00 +4.95 -4.12 -5.38 -5.04 -0.43 +0.00 +6.22 -1.60 +4.95
Relative (%) -34.3 +0.0 +31.5 -26.2 -34.3 -32.0 -2.8 +0.0 +39.6 -10.2 +31.5
Steps
(reduced)
76
(76)
121
(0)
153
(32)
177
(56)
197
(76)
214
(93)
229
(108)
242
(0)
254
(12)
264
(22)
274
(32)
Approximation of harmonics in 121edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +7.85 +5.30 -4.12 -5.82 -0.74 -5.38 -4.67 +0.84 -5.04 -6.98 -5.34
Relative (%) +49.9 +33.7 -26.2 -37.0 -4.7 -34.3 -29.7 +5.3 -32.0 -44.4 -34.0
Steps
(reduced)
283
(41)
291
(49)
298
(56)
305
(63)
312
(70)
318
(76)
324
(82)
330
(88)
335
(93)
340
(98)
345
(103)