120edt
Jump to navigation
Jump to search
Prime factorization
23 × 3 × 5
Step size
15.8496¢
Octave
76\120edt (1204.57¢) (→19\30edt)
Consistency limit
2
Distinct consistency limit
2
Special properties
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 119edt | 120edt | 121edt → |
120 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 120edt or 120ed3), is a nonoctave tuning system that divides the interval of 3/1 into 120 equal parts of about 15.8 ¢ each. Each step represents a frequency ratio of 31/120, or the 120th root of 3.
Intervals
Steps | Cents | Approximate Ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 15.85 | |
2 | 31.699 | |
3 | 47.549 | 36/35 |
4 | 63.399 | 27/26 |
5 | 79.248 | 22/21, 45/43 |
6 | 95.098 | 19/18 |
7 | 110.947 | |
8 | 126.797 | |
9 | 142.647 | 38/35 |
10 | 158.496 | 34/31 |
11 | 174.346 | 21/19 |
12 | 190.196 | 29/26 |
13 | 206.045 | |
14 | 221.895 | 25/22, 33/29 |
15 | 237.744 | 31/27, 39/34, 47/41 |
16 | 253.594 | 22/19 |
17 | 269.444 | |
18 | 285.293 | 46/39 |
19 | 301.143 | 25/21 |
20 | 316.993 | 6/5 |
21 | 332.842 | |
22 | 348.692 | 11/9 |
23 | 364.541 | |
24 | 380.391 | |
25 | 396.241 | 39/31, 44/35 |
26 | 412.09 | 33/26 |
27 | 427.94 | |
28 | 443.79 | |
29 | 459.639 | 43/33, 47/36 |
30 | 475.489 | 25/19 |
31 | 491.338 | |
32 | 507.188 | |
33 | 523.038 | 23/17 |
34 | 538.887 | 15/11, 41/30 |
35 | 554.737 | |
36 | 570.587 | 25/18 |
37 | 586.436 | |
38 | 602.286 | |
39 | 618.135 | 10/7 |
40 | 633.985 | |
41 | 649.835 | |
42 | 665.684 | |
43 | 681.534 | 43/29, 46/31 |
44 | 697.384 | |
45 | 713.233 | |
46 | 729.083 | |
47 | 744.932 | |
48 | 760.782 | 45/29 |
49 | 776.632 | 47/30 |
50 | 792.481 | 30/19 |
51 | 808.331 | |
52 | 824.181 | 29/18, 37/23 |
53 | 840.03 | |
54 | 855.88 | 41/25 |
55 | 871.729 | 43/26 |
56 | 887.579 | |
57 | 903.429 | |
58 | 919.278 | |
59 | 935.128 | 12/7 |
60 | 950.978 | 26/15, 45/26 |
61 | 966.827 | 7/4 |
62 | 982.677 | |
63 | 998.526 | |
64 | 1014.376 | |
65 | 1030.226 | |
66 | 1046.075 | |
67 | 1061.925 | |
68 | 1077.775 | 41/22 |
69 | 1093.624 | 47/25 |
70 | 1109.474 | 19/10 |
71 | 1125.323 | |
72 | 1141.173 | 29/15 |
73 | 1157.023 | 41/21 |
74 | 1172.872 | |
75 | 1188.722 | |
76 | 1204.572 | |
77 | 1220.421 | |
78 | 1236.271 | 49/24 |
79 | 1252.12 | |
80 | 1267.97 | |
81 | 1283.82 | 21/10 |
82 | 1299.669 | |
83 | 1315.519 | 47/22 |
84 | 1331.369 | 41/19 |
85 | 1347.218 | 37/17 |
86 | 1363.068 | 11/5 |
87 | 1378.917 | |
88 | 1394.767 | 47/21 |
89 | 1410.617 | |
90 | 1426.466 | 41/18 |
91 | 1442.316 | |
92 | 1458.166 | |
93 | 1474.015 | |
94 | 1489.865 | 26/11 |
95 | 1505.714 | 31/13, 43/18 |
96 | 1521.564 | |
97 | 1537.414 | |
98 | 1553.263 | 27/11, 49/20 |
99 | 1569.113 | 47/19 |
100 | 1584.963 | 5/2 |
101 | 1600.812 | |
102 | 1616.662 | |
103 | 1632.511 | |
104 | 1648.361 | |
105 | 1664.211 | 34/13 |
106 | 1680.06 | 29/11 |
107 | 1695.91 | |
108 | 1711.76 | |
109 | 1727.609 | 19/7 |
110 | 1743.459 | |
111 | 1759.308 | |
112 | 1775.158 | |
113 | 1791.008 | |
114 | 1806.857 | |
115 | 1822.707 | 43/15 |
116 | 1838.557 | 26/9 |
117 | 1854.406 | 35/12 |
118 | 1870.256 | |
119 | 1886.105 | |
120 | 1901.955 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +4.57 | +0.00 | -6.71 | +3.22 | +4.57 | +7.14 | -2.14 | +0.00 | +7.79 | +1.28 | -6.71 |
Relative (%) | +28.8 | +0.0 | -42.3 | +20.3 | +28.8 | +45.1 | -13.5 | +0.0 | +49.2 | +8.1 | -42.3 | |
Steps (reduced) |
76 (76) |
120 (0) |
151 (31) |
176 (56) |
196 (76) |
213 (93) |
227 (107) |
240 (0) |
252 (12) |
262 (22) |
271 (31) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | -4.13 | +3.22 | +2.44 | -7.42 | +4.57 | +6.07 | -3.49 | +7.14 | +5.86 | -7.70 |
Relative (%) | -16.6 | -26.1 | +20.3 | +15.4 | -46.8 | +28.8 | +38.3 | -22.0 | +45.1 | +36.9 | -48.6 | |
Steps (reduced) |
280 (40) |
288 (48) |
296 (56) |
303 (63) |
309 (69) |
316 (76) |
322 (82) |
327 (87) |
333 (93) |
338 (98) |
342 (102) |