120edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 119edt 120edt 121edt →
Prime factorization 23 × 3 × 5
Step size 15.8496¢ 
Octave 76\120edt (1204.57¢) (→19\30edt)
Consistency limit 2
Distinct consistency limit 2
Special properties

120 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 120edt or 120ed3), is a nonoctave tuning system that divides the interval of 3/1 into 120 equal parts of about 15.8⁠ ⁠¢ each. Each step represents a frequency ratio of 31/120, or the 120th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15.8 10.8
2 31.7 21.7
3 47.5 32.5 36/35
4 63.4 43.3 27/26
5 79.2 54.2 22/21, 45/43
6 95.1 65 19/18
7 110.9 75.8
8 126.8 86.7
9 142.6 97.5 38/35
10 158.5 108.3 34/31
11 174.3 119.2 21/19
12 190.2 130 29/26
13 206 140.8
14 221.9 151.7 25/22, 33/29
15 237.7 162.5 31/27, 39/34, 47/41
16 253.6 173.3 22/19
17 269.4 184.2
18 285.3 195 46/39
19 301.1 205.8 25/21
20 317 216.7 6/5
21 332.8 227.5
22 348.7 238.3 11/9
23 364.5 249.2
24 380.4 260
25 396.2 270.8 39/31, 44/35
26 412.1 281.7 33/26
27 427.9 292.5
28 443.8 303.3
29 459.6 314.2 43/33, 47/36
30 475.5 325 25/19
31 491.3 335.8
32 507.2 346.7
33 523 357.5 23/17
34 538.9 368.3 15/11, 41/30
35 554.7 379.2
36 570.6 390 25/18
37 586.4 400.8
38 602.3 411.7
39 618.1 422.5 10/7
40 634 433.3
41 649.8 444.2
42 665.7 455
43 681.5 465.8 43/29, 46/31
44 697.4 476.7
45 713.2 487.5
46 729.1 498.3
47 744.9 509.2
48 760.8 520 45/29
49 776.6 530.8 47/30
50 792.5 541.7 30/19
51 808.3 552.5
52 824.2 563.3 29/18, 37/23
53 840 574.2
54 855.9 585 41/25
55 871.7 595.8 43/26
56 887.6 606.7
57 903.4 617.5
58 919.3 628.3
59 935.1 639.2 12/7
60 951 650 26/15, 45/26
61 966.8 660.8 7/4
62 982.7 671.7
63 998.5 682.5
64 1014.4 693.3
65 1030.2 704.2
66 1046.1 715
67 1061.9 725.8
68 1077.8 736.7 41/22
69 1093.6 747.5 47/25
70 1109.5 758.3 19/10
71 1125.3 769.2
72 1141.2 780 29/15
73 1157 790.8 41/21
74 1172.9 801.7
75 1188.7 812.5
76 1204.6 823.3
77 1220.4 834.2
78 1236.3 845 49/24
79 1252.1 855.8
80 1268 866.7
81 1283.8 877.5 21/10
82 1299.7 888.3
83 1315.5 899.2 47/22
84 1331.4 910 41/19
85 1347.2 920.8 37/17
86 1363.1 931.7 11/5
87 1378.9 942.5
88 1394.8 953.3 47/21
89 1410.6 964.2
90 1426.5 975 41/18
91 1442.3 985.8
92 1458.2 996.7
93 1474 1007.5
94 1489.9 1018.3 26/11
95 1505.7 1029.2 31/13, 43/18
96 1521.6 1040
97 1537.4 1050.8
98 1553.3 1061.7 27/11, 49/20
99 1569.1 1072.5 47/19
100 1585 1083.3 5/2
101 1600.8 1094.2
102 1616.7 1105
103 1632.5 1115.8
104 1648.4 1126.7
105 1664.2 1137.5 34/13
106 1680.1 1148.3 29/11
107 1695.9 1159.2
108 1711.8 1170
109 1727.6 1180.8 19/7
110 1743.5 1191.7
111 1759.3 1202.5
112 1775.2 1213.3
113 1791 1224.2
114 1806.9 1235
115 1822.7 1245.8 43/15
116 1838.6 1256.7 26/9
117 1854.4 1267.5 35/12
118 1870.3 1278.3
119 1886.1 1289.2
120 1902 1300 3/1

Harmonics

Approximation of harmonics in 120edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +4.57 +0.00 -6.71 +3.22 +4.57 +7.14 -2.14 +0.00 +7.79 +1.28 -6.71
Relative (%) +28.8 +0.0 -42.3 +20.3 +28.8 +45.1 -13.5 +0.0 +49.2 +8.1 -42.3
Steps
(reduced)
76
(76)
120
(0)
151
(31)
176
(56)
196
(76)
213
(93)
227
(107)
240
(0)
252
(12)
262
(22)
271
(31)
Approximation of harmonics in 120edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 -4.13 +3.22 +2.44 -7.42 +4.57 +6.07 -3.49 +7.14 +5.86 -7.70
Relative (%) -16.6 -26.1 +20.3 +15.4 -46.8 +28.8 +38.3 -22.0 +45.1 +36.9 -48.6
Steps
(reduced)
280
(40)
288
(48)
296
(56)
303
(63)
309
(69)
316
(76)
322
(82)
327
(87)
333
(93)
338
(98)
342
(102)