119edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 118edt 119edt 120edt →
Prime factorization 7 × 17
Step size 15.9828¢ 
Octave 75\119edt (1198.71¢)
Consistency limit 5
Distinct consistency limit 5

119 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 119edt or 119ed3), is a nonoctave tuning system that divides the interval of 3/1 into 119 equal parts of about 16 ¢ each. Each step represents a frequency ratio of 31/119, or the 119th root of 3.

Intervals

Steps Cents Approximate ratios
0 0 1/1
1 15.983
2 31.966
3 47.948 36/35, 37/36, 38/37
4 63.931 27/26, 28/27
5 79.914 22/21, 45/43
6 95.897 37/35
7 111.88 16/15
8 127.863 14/13
9 143.845 38/35
10 159.828 34/31, 45/41
11 175.811 31/28, 41/37
12 191.794 19/17, 48/43
13 207.777 44/39
14 223.759 33/29, 41/36
15 239.742 31/27
16 255.725 22/19
17 271.708 48/41
18 287.691 13/11, 46/39
19 303.673 31/26
20 319.656
21 335.639 17/14
22 351.622 38/31
23 367.605 21/17, 47/38
24 383.588
25 399.57 29/23, 34/27
26 415.553 14/11, 47/37
27 431.536
28 447.519 22/17, 35/27
29 463.502 17/13, 47/36
30 479.484 29/22
31 495.467
32 511.45 39/29, 43/32, 47/35
33 527.433 19/14, 42/31
34 543.416 26/19
35 559.399 29/21, 47/34
36 575.381 39/28, 46/33
37 591.364 38/27, 45/32
38 607.347 27/19, 44/31
39 623.33 33/23, 43/30
40 639.313 42/29
41 655.295 19/13
42 671.278 28/19
43 687.261
44 703.244 3/2
45 719.227 47/31
46 735.209 26/17
47 751.192 37/24
48 767.175
49 783.158 11/7
50 799.141 27/17, 46/29
51 815.124 8/5
52 831.106 21/13
53 847.089 31/19, 44/27
54 863.072 28/17
55 879.055
56 895.038 47/28
57 911.02 22/13
58 927.003 41/24
59 942.986 31/18
60 958.969 47/27
61 974.952
62 990.935 39/22
63 1006.917 34/19
64 1022.9
65 1038.883 31/17
66 1054.866
67 1070.849 13/7
68 1086.831 15/8
69 1102.814 17/9
70 1118.797 21/11
71 1134.78
72 1150.763 35/18
73 1166.746
74 1182.728
75 1198.711 2/1
76 1214.694
77 1230.677
78 1246.66 37/18, 39/19
79 1262.642 29/14
80 1278.625 23/11, 44/21
81 1294.608 19/9
82 1310.591 32/15, 49/23
83 1326.574 28/13, 43/20
84 1342.556
85 1358.539 46/21
86 1374.522 31/14, 42/19
87 1390.505 29/13
88 1406.488
89 1422.471
90 1438.453 39/17
91 1454.436 44/19
92 1470.419
93 1486.402 33/14
94 1502.385
95 1518.367
96 1534.35 17/7
97 1550.333
98 1566.316 42/17, 47/19
99 1582.299
100 1598.282
101 1614.264 33/13
102 1630.247 41/16
103 1646.23 44/17
104 1662.213 47/18
105 1678.196 29/11
106 1694.178
107 1710.161 43/16
108 1726.144
109 1742.127 41/15
110 1758.11
111 1774.092 39/14
112 1790.075 45/16
113 1806.058
114 1822.041 43/15
115 1838.024 26/9
116 1854.007 35/12
117 1869.989
118 1885.972
119 1901.955 3/1

Harmonics

Approximation of harmonics in 119edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.29 +0.00 -2.58 -5.30 -1.29 +3.55 -3.87 +0.00 -6.59 +4.21 -2.58
Relative (%) -8.1 +0.0 -16.1 -33.2 -8.1 +22.2 -24.2 +0.0 -41.2 +26.4 -16.1
Steps
(reduced)
75
(75)
119
(0)
150
(31)
174
(55)
194
(75)
211
(92)
225
(106)
238
(0)
249
(11)
260
(22)
269
(31)
Approximation of harmonics in 119edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.69 +2.26 -5.30 -5.16 +1.77 -1.29 +1.01 -7.88 +3.55 +2.93 +5.88
Relative (%) +16.9 +14.1 -33.2 -32.3 +11.1 -8.1 +6.3 -49.3 +22.2 +18.3 +36.8
Steps
(reduced)
278
(40)
286
(48)
293
(55)
300
(62)
307
(69)
313
(75)
319
(81)
324
(86)
330
(92)
335
(97)
340
(102)