127edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 126edt127edt128edt →
Prime factorization 127 (prime)
Step size 14.976¢ 
Octave 80\127edt (1198.08¢)
Consistency limit 11
Distinct consistency limit 11

127 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 127edt or 127ed3), is a nonoctave tuning system that divides the interval of 3/1 into 127 equal parts of about 15 ¢ each. Each step represents a frequency ratio of 31/127, or the 127th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.976
2 29.952
3 44.928 38/37
4 59.904 29/28, 30/29
5 74.88 24/23, 47/45
6 89.856 20/19
7 104.832
8 119.808 15/14
9 134.784 27/25, 40/37
10 149.76 12/11
11 164.736 11/10
12 179.712
13 194.688 28/25, 47/42
14 209.664 35/31
15 224.64 33/29, 41/36, 49/43
16 239.616 31/27
17 254.592 22/19
18 269.568
19 284.544 33/28
20 299.52 44/37
21 314.496 6/5
22 329.473 23/19, 29/24
23 344.449 50/41
24 359.425
25 374.401 36/29, 41/33
26 389.377
27 404.353 24/19
28 419.329 14/11
29 434.305 9/7
30 449.281 35/27, 48/37
31 464.257 17/13
32 479.233 29/22, 33/25
33 494.209
34 509.185 47/35
35 524.161 42/31
36 539.137 41/30
37 554.113
38 569.089 25/18
39 584.065 7/5
40 599.041 41/29
41 614.017 47/33
42 628.993 23/16
43 643.969 29/20, 45/31
44 658.945 41/28
45 673.921 31/21
46 688.897
47 703.873
48 718.849 47/31, 50/33
49 733.825 26/17, 29/19
50 748.801 37/24
51 763.777 14/9
52 778.753 47/30
53 793.729 19/12, 49/31
54 808.705
55 823.681 37/23
56 838.657
57 853.633 18/11
58 868.609 33/20, 38/23
59 883.585 5/3
60 898.561 37/22, 42/25
61 913.537
62 928.513 41/24
63 943.489 50/29
64 958.466 40/23, 47/27
65 973.442
66 988.418
67 1003.394 25/14
68 1018.37 9/5
69 1033.346 20/11, 49/27
70 1048.322 11/6
71 1063.298 37/20
72 1078.274 41/22
73 1093.25 47/25
74 1108.226 36/19
75 1123.202 44/23
76 1138.178 27/14
77 1153.154 37/19
78 1168.13 51/26
79 1183.106
80 1198.082
81 1213.058
82 1228.034
83 1243.01 41/20
84 1257.986 31/15
85 1272.962 48/23
86 1287.938 40/19
87 1302.914
88 1317.89 15/7
89 1332.866 41/19
90 1347.842
91 1362.818
92 1377.794 31/14
93 1392.77
94 1407.746
95 1422.722 25/11
96 1437.698 39/17
97 1452.674 37/16, 44/19
98 1467.65 7/3
99 1482.626 33/14
100 1497.602 19/8
101 1512.578
102 1527.554 29/12
103 1542.53
104 1557.506
105 1572.482
106 1587.459 5/2
107 1602.435
108 1617.411 28/11
109 1632.387
110 1647.363
111 1662.339 47/18
112 1677.315 29/11
113 1692.291
114 1707.267
115 1722.243
116 1737.219 30/11
117 1752.195 11/4
118 1767.171 25/9
119 1782.147 14/5
120 1797.123
121 1812.099
122 1827.075 23/8
123 1842.051 29/10
124 1857.027
125 1872.003
126 1886.979
127 1901.955 3/1

Harmonics

Approximation of harmonics in 127edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.92 +0.00 -3.84 -0.77 -1.92 +0.78 -5.75 +0.00 -2.69 -2.96 -3.84
Relative (%) -12.8 +0.0 -25.6 -5.2 -12.8 +5.2 -38.4 +0.0 -18.0 -19.8 -25.6
Steps
(reduced)
80
(80)
127
(0)
160
(33)
186
(59)
207
(80)
225
(98)
240
(113)
254
(0)
266
(12)
277
(23)
287
(33)
Approximation of harmonics in 127edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +7.35 -1.14 -0.77 +7.30 +7.18 -1.92 -5.66 -4.61 +0.78 -4.88 -6.95
Relative (%) +49.1 -7.6 -5.2 +48.8 +47.9 -12.8 -37.8 -30.8 +5.2 -32.6 -46.4
Steps
(reduced)
297
(43)
305
(51)
313
(59)
321
(67)
328
(74)
334
(80)
340
(86)
346
(92)
352
(98)
357
(103)
362
(108)