127edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 126edt 127edt 128edt →
Prime factorization 127 (prime)
Step size 14.976¢ 
Octave 80\127edt (1198.08¢)
Consistency limit 11
Distinct consistency limit 11

127 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 127edt or 127ed3), is a nonoctave tuning system that divides the interval of 3/1 into 127 equal parts of about 15⁠ ⁠¢ each. Each step represents a frequency ratio of 31/127, or the 127th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 15 10.2
2 30 20.5
3 44.9 30.7 38/37
4 59.9 40.9 29/28, 30/29
5 74.9 51.2 24/23, 47/45
6 89.9 61.4 20/19
7 104.8 71.7
8 119.8 81.9 15/14
9 134.8 92.1 27/25, 40/37
10 149.8 102.4 12/11
11 164.7 112.6 11/10
12 179.7 122.8
13 194.7 133.1 28/25, 47/42
14 209.7 143.3 35/31
15 224.6 153.5 33/29, 41/36, 49/43
16 239.6 163.8 31/27
17 254.6 174 22/19
18 269.6 184.3
19 284.5 194.5 33/28
20 299.5 204.7 44/37
21 314.5 215 6/5
22 329.5 225.2 23/19, 29/24
23 344.4 235.4 50/41
24 359.4 245.7
25 374.4 255.9 36/29, 41/33
26 389.4 266.1
27 404.4 276.4 24/19
28 419.3 286.6 14/11
29 434.3 296.9 9/7
30 449.3 307.1 35/27, 48/37
31 464.3 317.3 17/13
32 479.2 327.6 29/22, 33/25
33 494.2 337.8
34 509.2 348 47/35
35 524.2 358.3 42/31
36 539.1 368.5 41/30
37 554.1 378.7
38 569.1 389 25/18
39 584.1 399.2 7/5
40 599 409.4 41/29
41 614 419.7 47/33
42 629 429.9 23/16
43 644 440.2 29/20, 45/31
44 658.9 450.4 41/28
45 673.9 460.6 31/21
46 688.9 470.9
47 703.9 481.1
48 718.8 491.3 47/31, 50/33
49 733.8 501.6 26/17, 29/19
50 748.8 511.8 37/24
51 763.8 522 14/9
52 778.8 532.3 47/30
53 793.7 542.5 19/12, 49/31
54 808.7 552.8
55 823.7 563 37/23
56 838.7 573.2
57 853.6 583.5 18/11
58 868.6 593.7 33/20, 38/23
59 883.6 603.9 5/3
60 898.6 614.2 37/22, 42/25
61 913.5 624.4
62 928.5 634.6 41/24
63 943.5 644.9 50/29
64 958.5 655.1 40/23, 47/27
65 973.4 665.4
66 988.4 675.6
67 1003.4 685.8 25/14
68 1018.4 696.1 9/5
69 1033.3 706.3 20/11, 49/27
70 1048.3 716.5 11/6
71 1063.3 726.8 37/20
72 1078.3 737 41/22
73 1093.2 747.2 47/25
74 1108.2 757.5 36/19
75 1123.2 767.7 44/23
76 1138.2 778 27/14
77 1153.2 788.2 37/19
78 1168.1 798.4 51/26
79 1183.1 808.7
80 1198.1 818.9
81 1213.1 829.1
82 1228 839.4
83 1243 849.6 41/20
84 1258 859.8 31/15
85 1273 870.1 48/23
86 1287.9 880.3 40/19
87 1302.9 890.6
88 1317.9 900.8 15/7
89 1332.9 911 41/19
90 1347.8 921.3
91 1362.8 931.5
92 1377.8 941.7 31/14
93 1392.8 952
94 1407.7 962.2
95 1422.7 972.4 25/11
96 1437.7 982.7 39/17
97 1452.7 992.9 37/16, 44/19
98 1467.7 1003.1 7/3
99 1482.6 1013.4 33/14
100 1497.6 1023.6 19/8
101 1512.6 1033.9
102 1527.6 1044.1 29/12
103 1542.5 1054.3
104 1557.5 1064.6
105 1572.5 1074.8
106 1587.5 1085 5/2
107 1602.4 1095.3
108 1617.4 1105.5 28/11
109 1632.4 1115.7
110 1647.4 1126
111 1662.3 1136.2 47/18
112 1677.3 1146.5 29/11
113 1692.3 1156.7
114 1707.3 1166.9
115 1722.2 1177.2
116 1737.2 1187.4 30/11
117 1752.2 1197.6 11/4
118 1767.2 1207.9 25/9
119 1782.1 1218.1 14/5
120 1797.1 1228.3
121 1812.1 1238.6
122 1827.1 1248.8 23/8
123 1842.1 1259.1 29/10
124 1857 1269.3
125 1872 1279.5
126 1887 1289.8
127 1902 1300 3/1

Harmonics

Approximation of harmonics in 127edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -1.92 +0.00 -3.84 -0.77 -1.92 +0.78 -5.75 +0.00 -2.69 -2.96 -3.84
Relative (%) -12.8 +0.0 -25.6 -5.2 -12.8 +5.2 -38.4 +0.0 -18.0 -19.8 -25.6
Steps
(reduced)
80
(80)
127
(0)
160
(33)
186
(59)
207
(80)
225
(98)
240
(113)
254
(0)
266
(12)
277
(23)
287
(33)
Approximation of harmonics in 127edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +7.35 -1.14 -0.77 +7.30 +7.18 -1.92 -5.66 -4.61 +0.78 -4.88 -6.95
Relative (%) +49.1 -7.6 -5.2 +48.8 +47.9 -12.8 -37.8 -30.8 +5.2 -32.6 -46.4
Steps
(reduced)
297
(43)
305
(51)
313
(59)
321
(67)
328
(74)
334
(80)
340
(86)
346
(92)
352
(98)
357
(103)
362
(108)