128edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 127edt128edt129edt →
Prime factorization 27
Step size 14.859¢ 
Octave 81\128edt (1203.58¢)
Consistency limit 7
Distinct consistency limit 7

128 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 128edt or 128ed3), is a nonoctave tuning system that divides the interval of 3/1 into 128 equal parts of about 14.9 ¢ each. Each step represents a frequency ratio of 31/128, or the 128th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.859
2 29.718
3 44.577 38/37, 39/38
4 59.436
5 74.295 47/45
6 89.154
7 104.013 52/49
8 118.872 15/14
9 133.731
10 148.59 49/45
11 163.449
12 178.308 41/37, 51/46
13 193.167 19/17, 47/42
14 208.026 44/39
15 222.885 33/29
16 237.744 31/27, 39/34, 47/41
17 252.603 22/19
18 267.462 7/6
19 282.321
20 297.18 51/43
21 312.039
22 326.899
23 341.758
24 356.617
25 371.476 26/21
26 386.335 5/4
27 401.194 29/23
28 416.053
29 430.912
30 445.771 22/17
31 460.63 47/36
32 475.489
33 490.348
34 505.207
35 520.066
36 534.925 49/36
37 549.784
38 564.643 18/13, 43/31
39 579.502
40 594.361 31/22
41 609.22 27/19, 37/26
42 624.079 33/23
43 638.938
44 653.797 35/24
45 668.656
46 683.515 43/29, 46/31
47 698.374
48 713.233
49 728.092
50 742.951
51 757.81
52 772.669 25/16
53 787.528 41/26
54 802.387 27/17
55 817.246
56 832.105 21/13
57 846.964 31/19, 44/27
58 861.823 51/31
59 876.682
60 891.541
61 906.4
62 921.259 46/27
63 936.118
64 950.978 26/15, 45/26
65 965.837
66 980.696 37/21
67 995.555
68 1010.414
69 1025.273 38/21, 47/26
70 1040.132 31/17
71 1054.991
72 1069.85 13/7
73 1084.709 43/23
74 1099.568 17/9
75 1114.427
76 1129.286 48/25
77 1144.145
78 1159.004 41/21, 43/22
79 1173.863
80 1188.722
81 1203.581
82 1218.44
83 1233.299
84 1248.158 37/18
85 1263.017
86 1277.876 23/11
87 1292.735 19/9
88 1307.594
89 1322.453
90 1337.312 13/6
91 1352.171
92 1367.03
93 1381.889
94 1396.748
95 1411.607
96 1426.466 41/18
97 1441.325
98 1456.184 51/22
99 1471.043
100 1485.902
101 1500.761
102 1515.62 12/5
103 1530.479 46/19
104 1545.338
105 1560.197
106 1575.056
107 1589.916
108 1604.775 43/17
109 1619.634
110 1634.493 18/7
111 1649.352
112 1664.211 34/13
113 1679.07 29/11
114 1693.929
115 1708.788 51/19
116 1723.647 46/17
117 1738.506
118 1753.365
119 1768.224
120 1783.083 14/5
121 1797.942
122 1812.801
123 1827.66
124 1842.519
125 1857.378 38/13
126 1872.237
127 1887.096
128 1901.955 3/1

Harmonics

Approximation of harmonics in 128edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +3.58 +0.00 +7.16 +7.18 +3.58 +4.17 -4.12 +0.00 -4.10 -5.65 +7.16
Relative (%) +24.1 +0.0 +48.2 +48.3 +24.1 +28.1 -27.7 +0.0 -27.6 -38.0 +48.2
Steps
(reduced)
81
(81)
128
(0)
162
(34)
188
(60)
209
(81)
227
(99)
242
(114)
256
(0)
268
(12)
279
(23)
290
(34)
Approximation of harmonics in 128edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +2.32 -7.11 +7.18 -0.54 -1.48 +3.58 -0.87 -0.51 +4.17 -2.07 -4.73
Relative (%) +15.6 -47.8 +48.3 -3.6 -9.9 +24.1 -5.8 -3.5 +28.1 -13.9 -31.8
Steps
(reduced)
299
(43)
307
(51)
316
(60)
323
(67)
330
(74)
337
(81)
343
(87)
349
(93)
355
(99)
360
(104)
365
(109)