128edt
Jump to navigation
Jump to search
Prime factorization
27
Step size
14.859¢
Octave
81\128edt (1203.58¢)
Consistency limit
7
Distinct consistency limit
7
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 127edt | 128edt | 129edt → |
128 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 128edt or 128ed3), is a nonoctave tuning system that divides the interval of 3/1 into 128 equal parts of about 14.9 ¢ each. Each step represents a frequency ratio of 31/128, or the 128th root of 3.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 14.9 | 10.2 | |
2 | 29.7 | 20.3 | |
3 | 44.6 | 30.5 | 38/37, 39/38 |
4 | 59.4 | 40.6 | |
5 | 74.3 | 50.8 | 47/45 |
6 | 89.2 | 60.9 | |
7 | 104 | 71.1 | 52/49 |
8 | 118.9 | 81.3 | 15/14 |
9 | 133.7 | 91.4 | |
10 | 148.6 | 101.6 | 49/45 |
11 | 163.4 | 111.7 | |
12 | 178.3 | 121.9 | 41/37, 51/46 |
13 | 193.2 | 132 | 19/17, 47/42 |
14 | 208 | 142.2 | 44/39 |
15 | 222.9 | 152.3 | 33/29 |
16 | 237.7 | 162.5 | 31/27, 39/34, 47/41 |
17 | 252.6 | 172.7 | 22/19 |
18 | 267.5 | 182.8 | 7/6 |
19 | 282.3 | 193 | |
20 | 297.2 | 203.1 | 51/43 |
21 | 312 | 213.3 | |
22 | 326.9 | 223.4 | |
23 | 341.8 | 233.6 | |
24 | 356.6 | 243.8 | |
25 | 371.5 | 253.9 | 26/21 |
26 | 386.3 | 264.1 | 5/4 |
27 | 401.2 | 274.2 | 29/23 |
28 | 416.1 | 284.4 | |
29 | 430.9 | 294.5 | |
30 | 445.8 | 304.7 | 22/17 |
31 | 460.6 | 314.8 | 47/36 |
32 | 475.5 | 325 | |
33 | 490.3 | 335.2 | |
34 | 505.2 | 345.3 | |
35 | 520.1 | 355.5 | |
36 | 534.9 | 365.6 | 49/36 |
37 | 549.8 | 375.8 | |
38 | 564.6 | 385.9 | 18/13, 43/31 |
39 | 579.5 | 396.1 | |
40 | 594.4 | 406.3 | 31/22 |
41 | 609.2 | 416.4 | 27/19, 37/26 |
42 | 624.1 | 426.6 | 33/23 |
43 | 638.9 | 436.7 | |
44 | 653.8 | 446.9 | 35/24 |
45 | 668.7 | 457 | |
46 | 683.5 | 467.2 | 43/29, 46/31 |
47 | 698.4 | 477.3 | |
48 | 713.2 | 487.5 | |
49 | 728.1 | 497.7 | |
50 | 743 | 507.8 | |
51 | 757.8 | 518 | |
52 | 772.7 | 528.1 | 25/16 |
53 | 787.5 | 538.3 | 41/26 |
54 | 802.4 | 548.4 | 27/17 |
55 | 817.2 | 558.6 | |
56 | 832.1 | 568.8 | 21/13 |
57 | 847 | 578.9 | 31/19, 44/27 |
58 | 861.8 | 589.1 | 51/31 |
59 | 876.7 | 599.2 | |
60 | 891.5 | 609.4 | |
61 | 906.4 | 619.5 | |
62 | 921.3 | 629.7 | 46/27 |
63 | 936.1 | 639.8 | |
64 | 951 | 650 | 26/15, 45/26 |
65 | 965.8 | 660.2 | |
66 | 980.7 | 670.3 | 37/21 |
67 | 995.6 | 680.5 | |
68 | 1010.4 | 690.6 | |
69 | 1025.3 | 700.8 | 38/21, 47/26 |
70 | 1040.1 | 710.9 | 31/17 |
71 | 1055 | 721.1 | |
72 | 1069.8 | 731.3 | 13/7 |
73 | 1084.7 | 741.4 | 43/23 |
74 | 1099.6 | 751.6 | 17/9 |
75 | 1114.4 | 761.7 | |
76 | 1129.3 | 771.9 | 48/25 |
77 | 1144.1 | 782 | |
78 | 1159 | 792.2 | 41/21, 43/22 |
79 | 1173.9 | 802.3 | |
80 | 1188.7 | 812.5 | |
81 | 1203.6 | 822.7 | |
82 | 1218.4 | 832.8 | |
83 | 1233.3 | 843 | |
84 | 1248.2 | 853.1 | 37/18 |
85 | 1263 | 863.3 | |
86 | 1277.9 | 873.4 | 23/11 |
87 | 1292.7 | 883.6 | 19/9 |
88 | 1307.6 | 893.8 | |
89 | 1322.5 | 903.9 | |
90 | 1337.3 | 914.1 | 13/6 |
91 | 1352.2 | 924.2 | |
92 | 1367 | 934.4 | |
93 | 1381.9 | 944.5 | |
94 | 1396.7 | 954.7 | |
95 | 1411.6 | 964.8 | |
96 | 1426.5 | 975 | 41/18 |
97 | 1441.3 | 985.2 | |
98 | 1456.2 | 995.3 | 51/22 |
99 | 1471 | 1005.5 | |
100 | 1485.9 | 1015.6 | |
101 | 1500.8 | 1025.8 | |
102 | 1515.6 | 1035.9 | 12/5 |
103 | 1530.5 | 1046.1 | 46/19 |
104 | 1545.3 | 1056.3 | |
105 | 1560.2 | 1066.4 | |
106 | 1575.1 | 1076.6 | |
107 | 1589.9 | 1086.7 | |
108 | 1604.8 | 1096.9 | 43/17 |
109 | 1619.6 | 1107 | |
110 | 1634.5 | 1117.2 | 18/7 |
111 | 1649.4 | 1127.3 | |
112 | 1664.2 | 1137.5 | 34/13 |
113 | 1679.1 | 1147.7 | 29/11 |
114 | 1693.9 | 1157.8 | |
115 | 1708.8 | 1168 | 51/19 |
116 | 1723.6 | 1178.1 | 46/17 |
117 | 1738.5 | 1188.3 | |
118 | 1753.4 | 1198.4 | |
119 | 1768.2 | 1208.6 | |
120 | 1783.1 | 1218.8 | 14/5 |
121 | 1797.9 | 1228.9 | |
122 | 1812.8 | 1239.1 | |
123 | 1827.7 | 1249.2 | |
124 | 1842.5 | 1259.4 | |
125 | 1857.4 | 1269.5 | 38/13 |
126 | 1872.2 | 1279.7 | |
127 | 1887.1 | 1289.8 | |
128 | 1902 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +3.58 | +0.00 | +7.16 | +7.18 | +3.58 | +4.17 | -4.12 | +0.00 | -4.10 | -5.65 | +7.16 |
Relative (%) | +24.1 | +0.0 | +48.2 | +48.3 | +24.1 | +28.1 | -27.7 | +0.0 | -27.6 | -38.0 | +48.2 | |
Steps (reduced) |
81 (81) |
128 (0) |
162 (34) |
188 (60) |
209 (81) |
227 (99) |
242 (114) |
256 (0) |
268 (12) |
279 (23) |
290 (34) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +2.32 | -7.11 | +7.18 | -0.54 | -1.48 | +3.58 | -0.87 | -0.51 | +4.17 | -2.07 | -4.73 |
Relative (%) | +15.6 | -47.8 | +48.3 | -3.6 | -9.9 | +24.1 | -5.8 | -3.5 | +28.1 | -13.9 | -31.8 | |
Steps (reduced) |
299 (43) |
307 (51) |
316 (60) |
323 (67) |
330 (74) |
337 (81) |
343 (87) |
349 (93) |
355 (99) |
360 (104) |
365 (109) |