129edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 128edt 129edt 130edt →
Prime factorization 3 × 43
Step size 14.7438¢ 
Octave 81\129edt (1194.25¢) (→27\43edt)
Consistency limit 2
Distinct consistency limit 2

129 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 129edt or 129ed3), is a nonoctave tuning system that divides the interval of 3/1 into 129 equal parts of about 14.7⁠ ⁠¢ each. Each step represents a frequency ratio of 31/129, or the 129th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 14.7 10.1
2 29.5 20.2
3 44.2 30.2 39/38
4 59 40.3 30/29
5 73.7 50.4 47/45
6 88.5 60.5
7 103.2 70.5 52/49
8 118 80.6
9 132.7 90.7 27/25, 41/38
10 147.4 100.8 37/34
11 162.2 110.9 45/41
12 176.9 120.9 41/37
13 191.7 131 19/17
14 206.4 141.1
15 221.2 151.2 25/22
16 235.9 161.2 39/34, 47/41
17 250.6 171.3
18 265.4 181.4 7/6
19 280.1 191.5
20 294.9 201.6 51/43
21 309.6 211.6
22 324.4 221.7 35/29, 41/34, 47/39
23 339.1 231.8 45/37
24 353.9 241.9 27/22, 38/31
25 368.6 251.9 26/21, 47/38
26 383.3 262
27 398.1 272.1 34/27, 39/31
28 412.8 282.2 47/37
29 427.6 292.2
30 442.3 302.3
31 457.1 312.4 43/33
32 471.8 322.5 46/35
33 486.5 332.6 45/34
34 501.3 342.6
35 516 352.7 31/23, 35/26
36 530.8 362.8 34/25
37 545.5 372.9 37/27
38 560.3 382.9 29/21, 47/34
39 575 393
40 589.8 403.1
41 604.5 413.2 44/31
42 619.2 423.3 10/7
43 634 433.3
44 648.7 443.4
45 663.5 453.5 22/15
46 678.2 463.6 34/23, 37/25
47 693 473.6
48 707.7 483.7
49 722.4 493.8 41/27, 44/29
50 737.2 503.9
51 751.9 514 17/11
52 766.7 524
53 781.4 534.1
54 796.2 544.2
55 810.9 554.3
56 825.7 564.3 29/18
57 840.4 574.4
58 855.1 584.5 41/25
59 869.9 594.6 38/23
60 884.6 604.7 5/3
61 899.4 614.7 37/22
62 914.1 624.8 39/23
63 928.9 634.9
64 943.6 645 50/29
65 958.3 655 47/27
66 973.1 665.1
67 987.8 675.2 23/13
68 1002.6 685.3 41/23
69 1017.3 695.3 9/5
70 1032.1 705.4
71 1046.8 715.5
72 1061.6 725.6
73 1076.3 735.7 41/22
74 1091 745.7 47/25
75 1105.8 755.8
76 1120.5 765.9
77 1135.3 776
78 1150 786 33/17, 35/18
79 1164.8 796.1
80 1179.5 806.2
81 1194.3 816.3
82 1209 826.4
83 1223.7 836.4
84 1238.5 846.5 45/22, 47/23
85 1253.2 856.6
86 1268 866.7
87 1282.7 876.7 21/10
88 1297.5 886.8
89 1312.2 896.9
90 1326.9 907
91 1341.7 917.1
92 1356.4 927.1 46/21
93 1371.2 937.2
94 1385.9 947.3
95 1400.7 957.4
96 1415.4 967.4 34/15, 43/19
97 1430.2 977.5
98 1444.9 987.6
99 1459.6 997.7
100 1474.4 1007.8
101 1489.1 1017.8
102 1503.9 1027.9 31/13
103 1518.6 1038
104 1533.4 1048.1
105 1548.1 1058.1 22/9
106 1562.8 1068.2 37/15
107 1577.6 1078.3
108 1592.3 1088.4
109 1607.1 1098.4 43/17
110 1621.8 1108.5
111 1636.6 1118.6 18/7
112 1651.3 1128.7
113 1666.1 1138.8 34/13
114 1680.8 1148.8
115 1695.5 1158.9
116 1710.3 1169 51/19
117 1725 1179.1
118 1739.8 1189.1 41/15
119 1754.5 1199.2
120 1769.3 1209.3 25/9
121 1784 1219.4
122 1798.7 1229.5
123 1813.5 1239.5
124 1828.2 1249.6
125 1843 1259.7 29/10
126 1857.7 1269.8 38/13
127 1872.5 1279.8
128 1887.2 1289.9
129 1902 1300 3/1

Harmonics

Approximation of harmonics in 129edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.75 +0.00 +3.25 +0.27 -5.75 -7.23 -2.50 +0.00 -5.48 +6.44 +3.25
Relative (%) -39.0 +0.0 +22.0 +1.8 -39.0 -49.0 -17.0 +0.0 -37.2 +43.7 +22.0
Steps
(reduced)
81
(81)
129
(0)
163
(34)
189
(60)
210
(81)
228
(99)
244
(115)
258
(0)
270
(12)
282
(24)
292
(34)
Approximation of harmonics in 129edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +1.76 +0.27 +6.49 +4.74 -5.75 +3.85 +3.52 -7.23 +0.69 -2.54
Relative (%) -17.9 +12.0 +1.8 +44.0 +32.2 -39.0 +26.1 +23.9 -49.0 +4.7 -17.2
Steps
(reduced)
301
(43)
310
(52)
318
(60)
326
(68)
333
(75)
339
(81)
346
(88)
352
(94)
357
(99)
363
(105)
368
(110)