129edt
Jump to navigation
Jump to search
Prime factorization
3 × 43
Step size
14.7438¢
Octave
81\129edt (1194.25¢) (→27\43edt)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 128edt | 129edt | 130edt → |
129 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 129edt or 129ed3), is a nonoctave tuning system that divides the interval of 3/1 into 129 equal parts of about 14.7 ¢ each. Each step represents a frequency ratio of 31/129, or the 129th root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 14.7 | |
2 | 29.5 | |
3 | 44.2 | 39/38 |
4 | 59 | 30/29 |
5 | 73.7 | 47/45 |
6 | 88.5 | |
7 | 103.2 | 52/49 |
8 | 118 | |
9 | 132.7 | 27/25, 41/38 |
10 | 147.4 | 37/34 |
11 | 162.2 | 45/41 |
12 | 176.9 | 41/37 |
13 | 191.7 | 19/17 |
14 | 206.4 | |
15 | 221.2 | 25/22 |
16 | 235.9 | 39/34, 47/41 |
17 | 250.6 | |
18 | 265.4 | 7/6 |
19 | 280.1 | |
20 | 294.9 | 51/43 |
21 | 309.6 | |
22 | 324.4 | 35/29, 41/34, 47/39 |
23 | 339.1 | 45/37 |
24 | 353.9 | 27/22, 38/31 |
25 | 368.6 | 26/21, 47/38 |
26 | 383.3 | |
27 | 398.1 | 34/27, 39/31 |
28 | 412.8 | 47/37 |
29 | 427.6 | |
30 | 442.3 | |
31 | 457.1 | 43/33 |
32 | 471.8 | 46/35 |
33 | 486.5 | 45/34 |
34 | 501.3 | |
35 | 516 | 31/23, 35/26 |
36 | 530.8 | 34/25 |
37 | 545.5 | 37/27 |
38 | 560.3 | 29/21, 47/34 |
39 | 575 | |
40 | 589.8 | |
41 | 604.5 | 44/31 |
42 | 619.2 | 10/7 |
43 | 634 | |
44 | 648.7 | |
45 | 663.5 | 22/15 |
46 | 678.2 | 34/23, 37/25 |
47 | 693 | |
48 | 707.7 | |
49 | 722.4 | 41/27, 44/29 |
50 | 737.2 | |
51 | 751.9 | 17/11 |
52 | 766.7 | |
53 | 781.4 | |
54 | 796.2 | |
55 | 810.9 | |
56 | 825.7 | 29/18 |
57 | 840.4 | |
58 | 855.1 | 41/25 |
59 | 869.9 | 38/23 |
60 | 884.6 | 5/3 |
61 | 899.4 | 37/22 |
62 | 914.1 | 39/23 |
63 | 928.9 | |
64 | 943.6 | 50/29 |
65 | 958.3 | 47/27 |
66 | 973.1 | |
67 | 987.8 | 23/13 |
68 | 1002.6 | 41/23 |
69 | 1017.3 | 9/5 |
70 | 1032.1 | |
71 | 1046.8 | |
72 | 1061.6 | |
73 | 1076.3 | 41/22 |
74 | 1091 | 47/25 |
75 | 1105.8 | |
76 | 1120.5 | |
77 | 1135.3 | |
78 | 1150 | 33/17, 35/18 |
79 | 1164.8 | |
80 | 1179.5 | |
81 | 1194.3 | |
82 | 1209 | |
83 | 1223.7 | |
84 | 1238.5 | 45/22, 47/23 |
85 | 1253.2 | |
86 | 1268 | |
87 | 1282.7 | 21/10 |
88 | 1297.5 | |
89 | 1312.2 | |
90 | 1326.9 | |
91 | 1341.7 | |
92 | 1356.4 | 46/21 |
93 | 1371.2 | |
94 | 1385.9 | |
95 | 1400.7 | |
96 | 1415.4 | 34/15, 43/19 |
97 | 1430.2 | |
98 | 1444.9 | |
99 | 1459.6 | |
100 | 1474.4 | |
101 | 1489.1 | |
102 | 1503.9 | 31/13 |
103 | 1518.6 | |
104 | 1533.4 | |
105 | 1548.1 | 22/9 |
106 | 1562.8 | 37/15 |
107 | 1577.6 | |
108 | 1592.3 | |
109 | 1607.1 | 43/17 |
110 | 1621.8 | |
111 | 1636.6 | 18/7 |
112 | 1651.3 | |
113 | 1666.1 | 34/13 |
114 | 1680.8 | |
115 | 1695.5 | |
116 | 1710.3 | 51/19 |
117 | 1725 | |
118 | 1739.8 | 41/15 |
119 | 1754.5 | |
120 | 1769.3 | 25/9 |
121 | 1784 | |
122 | 1798.7 | |
123 | 1813.5 | |
124 | 1828.2 | |
125 | 1843 | 29/10 |
126 | 1857.7 | 38/13 |
127 | 1872.5 | |
128 | 1887.2 | |
129 | 1902 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -5.75 | +0.00 | +3.25 | +0.27 | -5.75 | -7.23 | -2.50 | +0.00 | -5.48 | +6.44 | +3.25 |
Relative (%) | -39.0 | +0.0 | +22.0 | +1.8 | -39.0 | -49.0 | -17.0 | +0.0 | -37.2 | +43.7 | +22.0 | |
Steps (reduced) |
81 (81) |
129 (0) |
163 (34) |
189 (60) |
210 (81) |
228 (99) |
244 (115) |
258 (0) |
270 (12) |
282 (24) |
292 (34) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +1.76 | +0.27 | +6.49 | +4.74 | -5.75 | +3.85 | +3.52 | -7.23 | +0.69 | -2.54 |
Relative (%) | -17.9 | +12.0 | +1.8 | +44.0 | +32.2 | -39.0 | +26.1 | +23.9 | -49.0 | +4.7 | -17.2 | |
Steps (reduced) |
301 (43) |
310 (52) |
318 (60) |
326 (68) |
333 (75) |
339 (81) |
346 (88) |
352 (94) |
357 (99) |
363 (105) |
368 (110) |