129edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 128edt129edt130edt →
Prime factorization 3 × 43
Step size 14.7438¢ 
Octave 81\129edt (1194.25¢) (→27\43edt)
Consistency limit 2
Distinct consistency limit 2

129 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 129edt or 129ed3), is a nonoctave tuning system that divides the interval of 3/1 into 129 equal parts of about 14.7 ¢ each. Each step represents a frequency ratio of 31/129, or the 129th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.744
2 29.488
3 44.232 39/38
4 58.975 30/29
5 73.719 47/45
6 88.463
7 103.207 52/49
8 117.951
9 132.695 27/25, 41/38
10 147.438 37/34
11 162.182 45/41
12 176.926 41/37
13 191.67 19/17
14 206.414
15 221.158 25/22
16 235.901 39/34, 47/41
17 250.645
18 265.389 7/6
19 280.133
20 294.877 51/43
21 309.621
22 324.364 35/29, 41/34, 47/39
23 339.108 45/37
24 353.852 27/22, 38/31
25 368.596 26/21, 47/38
26 383.34
27 398.084 34/27, 39/31
28 412.827 47/37
29 427.571
30 442.315
31 457.059 43/33
32 471.803 46/35
33 486.547 45/34
34 501.29
35 516.034 31/23, 35/26
36 530.778 34/25
37 545.522 37/27
38 560.266 29/21, 47/34
39 575.01
40 589.753
41 604.497 44/31
42 619.241 10/7
43 633.985
44 648.729
45 663.473 22/15
46 678.217 34/23, 37/25
47 692.96
48 707.704
49 722.448 41/27, 44/29
50 737.192
51 751.936 17/11
52 766.68
53 781.423
54 796.167
55 810.911
56 825.655 29/18
57 840.399
58 855.143 41/25
59 869.886 38/23
60 884.63 5/3
61 899.374 37/22
62 914.118 39/23
63 928.862
64 943.606 50/29
65 958.349 47/27
66 973.093
67 987.837 23/13
68 1002.581 41/23
69 1017.325 9/5
70 1032.069
71 1046.812
72 1061.556
73 1076.3 41/22
74 1091.044 47/25
75 1105.788
76 1120.532
77 1135.275
78 1150.019 33/17, 35/18
79 1164.763
80 1179.507
81 1194.251
82 1208.995
83 1223.738
84 1238.482 45/22, 47/23
85 1253.226
86 1267.97
87 1282.714 21/10
88 1297.458
89 1312.202
90 1326.945
91 1341.689
92 1356.433 46/21
93 1371.177
94 1385.921
95 1400.665
96 1415.408 34/15, 43/19
97 1430.152
98 1444.896
99 1459.64
100 1474.384
101 1489.128
102 1503.871 31/13
103 1518.615
104 1533.359
105 1548.103 22/9
106 1562.847 37/15
107 1577.591
108 1592.334
109 1607.078 43/17
110 1621.822
111 1636.566 18/7
112 1651.31
113 1666.054 34/13
114 1680.797
115 1695.541
116 1710.285 51/19
117 1725.029
118 1739.773 41/15
119 1754.517
120 1769.26 25/9
121 1784.004
122 1798.748
123 1813.492
124 1828.236
125 1842.98 29/10
126 1857.723 38/13
127 1872.467
128 1887.211
129 1901.955 3/1

Harmonics

Approximation of harmonics in 129edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -5.75 +0.00 +3.25 +0.27 -5.75 -7.23 -2.50 +0.00 -5.48 +6.44 +3.25
Relative (%) -39.0 +0.0 +22.0 +1.8 -39.0 -49.0 -17.0 +0.0 -37.2 +43.7 +22.0
Steps
(reduced)
81
(81)
129
(0)
163
(34)
189
(60)
210
(81)
228
(99)
244
(115)
258
(0)
270
(12)
282
(24)
292
(34)
Approximation of harmonics in 129edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) -2.63 +1.76 +0.27 +6.49 +4.74 -5.75 +3.85 +3.52 -7.23 +0.69 -2.54
Relative (%) -17.9 +12.0 +1.8 +44.0 +32.2 -39.0 +26.1 +23.9 -49.0 +4.7 -17.2
Steps
(reduced)
301
(43)
310
(52)
318
(60)
326
(68)
333
(75)
339
(81)
346
(88)
352
(94)
357
(99)
363
(105)
368
(110)