130edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 129edt 130edt 131edt →
Prime factorization 2 × 5 × 13
Step size 14.6304¢ 
Octave 82\130edt (1199.69¢) (→41\65edt)
Consistency limit 10
Distinct consistency limit 10

130 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 130edt or 130ed3), is a nonoctave tuning system that divides the interval of 3/1 into 130 equal parts of about 14.6⁠ ⁠¢ each. Each step represents a frequency ratio of 31/130, or the 130th root of 3.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 14.6 10
2 29.3 20
3 43.9 30 41/40
4 58.5 40 30/29, 31/30
5 73.2 50 24/23
6 87.8 60 20/19
7 102.4 70
8 117 80 31/29, 46/43
9 131.7 90 41/38
10 146.3 100 37/34, 49/45
11 160.9 110 34/31, 45/41
12 175.6 120 31/28, 52/47
13 190.2 130 48/43
14 204.8 140 9/8
15 219.5 150 42/37
16 234.1 160
17 248.7 170
18 263.3 180
19 278 190 27/23
20 292.6 200 32/27, 45/38
21 307.2 210 37/31, 43/36, 49/41
22 321.9 220 47/39
23 336.5 230 17/14
24 351.1 240 38/31, 49/40
25 365.8 250 21/17
26 380.4 260
27 395 270
28 409.7 280 19/15
29 424.3 290 23/18
30 438.9 300 49/38
31 453.5 310
32 468.2 320 38/29
33 482.8 330 37/28, 41/31
34 497.4 340 4/3
35 512.1 350 43/32
36 526.7 360 42/31
37 541.3 370 41/30
38 556 380 40/29, 51/37
39 570.6 390 32/23
40 585.2 400
41 599.8 410 41/29
42 614.5 420
43 629.1 430 23/16
44 643.7 440 29/20, 45/31
45 658.4 450
46 673 460 28/19, 31/21
47 687.6 470
48 702.3 480 3/2
49 716.9 490
50 731.5 500 29/19
51 746.2 510
52 760.8 520 45/29
53 775.4 530 36/23
54 790 540 30/19
55 804.7 550 43/27
56 819.3 560
57 833.9 570 34/21
58 848.6 580 31/19, 49/30
59 863.2 590 28/17, 51/31
60 877.8 600
61 892.5 610
62 907.1 620 27/16, 49/29
63 921.7 630 46/27
64 936.3 640
65 951 650
66 965.6 660
67 980.2 670 37/21
68 994.9 680 16/9
69 1009.5 690 43/24
70 1024.1 700 47/26
71 1038.8 710 31/17, 51/28
72 1053.4 720
73 1068 730
74 1082.7 740 43/23
75 1097.3 750
76 1111.9 760 19/10
77 1126.5 770 23/12
78 1141.2 780 29/15
79 1155.8 790
80 1170.4 800
81 1185.1 810
82 1199.7 820 2/1
83 1214.3 830
84 1229 840
85 1243.6 850 41/20
86 1258.2 860 31/15
87 1272.8 870 48/23
88 1287.5 880 40/19
89 1302.1 890
90 1316.7 900
91 1331.4 910 41/19
92 1346 920 37/17
93 1360.6 930
94 1375.3 940 31/14
95 1389.9 950
96 1404.5 960 9/4
97 1419.2 970
98 1433.8 980
99 1448.4 990
100 1463 1000
101 1477.7 1010
102 1492.3 1020 45/19
103 1506.9 1030 43/18
104 1521.6 1040
105 1536.2 1050 17/7
106 1550.8 1060 49/20
107 1565.5 1070 42/17
108 1580.1 1080
109 1594.7 1090
110 1609.3 1100 38/15
111 1624 1110 23/9
112 1638.6 1120 49/19
113 1653.2 1130
114 1667.9 1140
115 1682.5 1150 37/14
116 1697.1 1160 8/3
117 1711.8 1170 43/16
118 1726.4 1180
119 1741 1190 41/15
120 1755.7 1200
121 1770.3 1210
122 1784.9 1220
123 1799.5 1230
124 1814.2 1240
125 1828.8 1250 23/8
126 1843.4 1260 29/10
127 1858.1 1270
128 1872.7 1280
129 1887.3 1290
130 1902 1300 3/1

Harmonics

Approximation of harmonics in 130edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.31 +0.00 -0.61 -6.53 -0.31 -3.83 -0.92 +0.00 -6.84 +3.72 -0.61
Relative (%) -2.1 +0.0 -4.2 -44.7 -2.1 -26.2 -6.3 +0.0 -46.7 +25.4 -4.2
Steps
(reduced)
82
(82)
130
(0)
164
(34)
190
(60)
212
(82)
230
(100)
246
(116)
260
(0)
272
(12)
284
(24)
294
(34)
Approximation of harmonics in 130edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +7.12 -4.13 -6.53 -1.22 -3.76 -0.31 -6.13 -7.14 -3.83 +3.42 -0.39
Relative (%) +48.7 -28.3 -44.7 -8.3 -25.7 -2.1 -41.9 -48.8 -26.2 +23.4 -2.6
Steps
(reduced)
304
(44)
312
(52)
320
(60)
328
(68)
335
(75)
342
(82)
348
(88)
354
(94)
360
(100)
366
(106)
371
(111)