130edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 129edt130edt131edt →
Prime factorization 2 × 5 × 13
Step size 14.6304¢ 
Octave 82\130edt (1199.69¢) (→41\65edt)
Consistency limit 10
Distinct consistency limit 10

130 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 130edt or 130ed3), is a nonoctave tuning system that divides the interval of 3/1 into 130 equal parts of about 14.6 ¢ each. Each step represents a frequency ratio of 31/130, or the 130th root of 3.

Intervals

Steps Cents Approximate Ratios
0 0 1/1
1 14.63
2 29.261
3 43.891 41/40
4 58.522 30/29, 31/30
5 73.152 24/23
6 87.783 20/19
7 102.413
8 117.043 31/29, 46/43
9 131.674 41/38
10 146.304 37/34, 49/45
11 160.935 34/31, 45/41
12 175.565 31/28, 52/47
13 190.196 48/43
14 204.826 9/8
15 219.456 42/37
16 234.087
17 248.717
18 263.348
19 277.978 27/23
20 292.608 32/27, 45/38
21 307.239 37/31, 43/36, 49/41
22 321.869 47/39
23 336.5 17/14
24 351.13 38/31, 49/40
25 365.761 21/17
26 380.391
27 395.021
28 409.652 19/15
29 424.282 23/18
30 438.913 49/38
31 453.543
32 468.174 38/29
33 482.804 37/28, 41/31
34 497.434 4/3
35 512.065 43/32
36 526.695 42/31
37 541.326 41/30
38 555.956 40/29, 51/37
39 570.587 32/23
40 585.217
41 599.847 41/29
42 614.478
43 629.108 23/16
44 643.739 29/20, 45/31
45 658.369
46 672.999 28/19, 31/21
47 687.63
48 702.26 3/2
49 716.891
50 731.521 29/19
51 746.152
52 760.782 45/29
53 775.412 36/23
54 790.043 30/19
55 804.673 43/27
56 819.304
57 833.934 34/21
58 848.565 31/19, 49/30
59 863.195 28/17, 51/31
60 877.825
61 892.456
62 907.086 27/16, 49/29
63 921.717 46/27
64 936.347
65 950.978
66 965.608
67 980.238 37/21
68 994.869 16/9
69 1009.499 43/24
70 1024.13 47/26
71 1038.76 31/17, 51/28
72 1053.39
73 1068.021
74 1082.651 43/23
75 1097.282
76 1111.912 19/10
77 1126.543 23/12
78 1141.173 29/15
79 1155.803
80 1170.434
81 1185.064
82 1199.695 2/1
83 1214.325
84 1228.956
85 1243.586 41/20
86 1258.216 31/15
87 1272.847 48/23
88 1287.477 40/19
89 1302.108
90 1316.738
91 1331.369 41/19
92 1345.999 37/17
93 1360.629
94 1375.26 31/14
95 1389.89
96 1404.521 9/4
97 1419.151
98 1433.781
99 1448.412
100 1463.042
101 1477.673
102 1492.303 45/19
103 1506.934 43/18
104 1521.564
105 1536.194 17/7
106 1550.825 49/20
107 1565.455 42/17
108 1580.086
109 1594.716
110 1609.347 38/15
111 1623.977 23/9
112 1638.607 49/19
113 1653.238
114 1667.868
115 1682.499 37/14
116 1697.129 8/3
117 1711.76 43/16
118 1726.39
119 1741.02 41/15
120 1755.651
121 1770.281
122 1784.912
123 1799.542
124 1814.172
125 1828.803 23/8
126 1843.433 29/10
127 1858.064
128 1872.694
129 1887.325
130 1901.955 3/1

Harmonics

Approximation of harmonics in 130edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) -0.31 +0.00 -0.61 -6.53 -0.31 -3.83 -0.92 +0.00 -6.84 +3.72 -0.61
Relative (%) -2.1 +0.0 -4.2 -44.7 -2.1 -26.2 -6.3 +0.0 -46.7 +25.4 -4.2
Steps
(reduced)
82
(82)
130
(0)
164
(34)
190
(60)
212
(82)
230
(100)
246
(116)
260
(0)
272
(12)
284
(24)
294
(34)
Approximation of harmonics in 130edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +7.12 -4.13 -6.53 -1.22 -3.76 -0.31 -6.13 -7.14 -3.83 +3.42 -0.39
Relative (%) +48.7 -28.3 -44.7 -8.3 -25.7 -2.1 -41.9 -48.8 -26.2 +23.4 -2.6
Steps
(reduced)
304
(44)
312
(52)
320
(60)
328
(68)
335
(75)
342
(82)
348
(88)
354
(94)
360
(100)
366
(106)
371
(111)