182edt
Jump to navigation
Jump to search
Prime factorization
2 × 7 × 13
Step size
10.4503¢
Octave
115\182edt (1201.78¢)
Consistency limit
5
Distinct consistency limit
5
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 181edt | 182edt | 183edt → |
182 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 182edt or 182ed3), is a nonoctave tuning system that divides the interval of 3/1 into 182 equal parts of about 10.5 ¢ each. Each step represents a frequency ratio of 31/182, or the 182nd root of 3.
Intervals
Steps | Cents | Approximate ratios |
---|---|---|
0 | 0 | 1/1 |
1 | 10.45 | |
2 | 20.9 | |
3 | 31.35 | 55/54, 56/55, 57/56 |
4 | 41.8 | 42/41, 43/42 |
5 | 52.25 | 34/33 |
6 | 62.7 | 28/27, 57/55 |
7 | 73.15 | |
8 | 83.6 | 43/41 |
9 | 94.05 | 19/18 |
10 | 104.5 | |
11 | 114.95 | 31/29, 47/44 |
12 | 125.4 | |
13 | 135.85 | |
14 | 146.3 | 37/34, 62/57 |
15 | 156.75 | 23/21 |
16 | 167.2 | |
17 | 177.66 | 41/37, 51/46 |
18 | 188.11 | 29/26, 39/35 |
19 | 198.56 | 37/33, 46/41 |
20 | 209.01 | 35/31, 44/39 |
21 | 219.46 | 42/37 |
22 | 229.91 | |
23 | 240.36 | 31/27, 54/47 |
24 | 250.81 | 52/45 |
25 | 261.26 | 43/37 |
26 | 271.71 | 55/47 |
27 | 282.16 | |
28 | 292.61 | 45/38 |
29 | 303.06 | 56/47 |
30 | 313.51 | |
31 | 323.96 | 41/34, 47/39 |
32 | 334.41 | 57/47 |
33 | 344.86 | |
34 | 355.31 | 27/22, 43/35 |
35 | 365.76 | 21/17 |
36 | 376.21 | 41/33, 46/37 |
37 | 386.66 | 5/4 |
38 | 397.11 | 39/31, 44/35 |
39 | 407.56 | 43/34 |
40 | 418.01 | 14/11 |
41 | 428.46 | 32/25 |
42 | 438.91 | 58/45 |
43 | 449.36 | 35/27, 57/44 |
44 | 459.81 | |
45 | 470.26 | |
46 | 480.71 | 62/47 |
47 | 491.16 | |
48 | 501.61 | |
49 | 512.06 | 39/29 |
50 | 522.52 | 23/17 |
51 | 532.97 | |
52 | 543.42 | 26/19, 63/46 |
53 | 553.87 | 62/45 |
54 | 564.32 | 18/13 |
55 | 574.77 | 39/28, 46/33 |
56 | 585.22 | |
57 | 595.67 | 55/39 |
58 | 606.12 | 44/31 |
59 | 616.57 | |
60 | 627.02 | 56/39 |
61 | 637.47 | 13/9 |
62 | 647.92 | |
63 | 658.37 | |
64 | 668.82 | |
65 | 679.27 | |
66 | 689.72 | |
67 | 700.17 | |
68 | 710.62 | |
69 | 721.07 | 44/29, 47/31 |
70 | 731.52 | 29/19 |
71 | 741.97 | 43/28 |
72 | 752.42 | 17/11 |
73 | 762.87 | |
74 | 773.32 | 25/16 |
75 | 783.77 | |
76 | 794.22 | |
77 | 804.67 | 35/22, 43/27 |
78 | 815.12 | |
79 | 825.57 | 29/18 |
80 | 836.02 | 47/29 |
81 | 846.47 | 31/19, 44/27 |
82 | 856.92 | |
83 | 867.38 | |
84 | 877.83 | |
85 | 888.28 | |
86 | 898.73 | |
87 | 909.18 | |
88 | 919.63 | |
89 | 930.08 | 65/38 |
90 | 940.53 | 31/18 |
91 | 950.98 | |
92 | 961.43 | 54/31 |
93 | 971.88 | |
94 | 982.33 | |
95 | 992.78 | 55/31 |
96 | 1003.23 | |
97 | 1013.68 | |
98 | 1024.13 | 47/26, 56/31, 65/36 |
99 | 1034.58 | |
100 | 1045.03 | |
101 | 1055.48 | 57/31 |
102 | 1065.93 | |
103 | 1076.38 | 54/29 |
104 | 1086.83 | |
105 | 1097.28 | |
106 | 1107.73 | 55/29 |
107 | 1118.18 | |
108 | 1128.63 | 48/25 |
109 | 1139.08 | 56/29 |
110 | 1149.53 | 33/17 |
111 | 1159.98 | 43/22 |
112 | 1170.43 | 57/29 |
113 | 1180.88 | |
114 | 1191.33 | |
115 | 1201.78 | |
116 | 1212.24 | |
117 | 1222.69 | |
118 | 1233.14 | |
119 | 1243.59 | |
120 | 1254.04 | |
121 | 1264.49 | 27/13 |
122 | 1274.94 | |
123 | 1285.39 | |
124 | 1295.84 | |
125 | 1306.29 | |
126 | 1316.74 | |
127 | 1327.19 | 28/13 |
128 | 1337.64 | 13/6 |
129 | 1348.09 | |
130 | 1358.54 | 46/21, 57/26 |
131 | 1368.99 | |
132 | 1379.44 | 51/23 |
133 | 1389.89 | 29/13 |
134 | 1400.34 | |
135 | 1410.79 | |
136 | 1421.24 | |
137 | 1431.69 | |
138 | 1442.14 | |
139 | 1452.59 | 44/19 |
140 | 1463.04 | |
141 | 1473.49 | |
142 | 1483.94 | 33/14 |
143 | 1494.39 | |
144 | 1504.84 | 31/13 |
145 | 1515.29 | 12/5 |
146 | 1525.74 | |
147 | 1536.19 | 17/7 |
148 | 1546.64 | 22/9 |
149 | 1557.1 | |
150 | 1567.55 | 47/19 |
151 | 1578 | |
152 | 1588.45 | |
153 | 1598.9 | |
154 | 1609.35 | 38/15 |
155 | 1619.8 | |
156 | 1630.25 | |
157 | 1640.7 | |
158 | 1651.15 | |
159 | 1661.6 | 47/18 |
160 | 1672.05 | |
161 | 1682.5 | 37/14 |
162 | 1692.95 | |
163 | 1703.4 | |
164 | 1713.85 | 35/13 |
165 | 1724.3 | 46/17, 65/24 |
166 | 1734.75 | |
167 | 1745.2 | 63/23 |
168 | 1755.65 | |
169 | 1766.1 | |
170 | 1776.55 | |
171 | 1787 | |
172 | 1797.45 | |
173 | 1807.9 | 54/19 |
174 | 1818.35 | |
175 | 1828.8 | |
176 | 1839.25 | 55/19 |
177 | 1849.7 | |
178 | 1860.15 | 41/14 |
179 | 1870.6 | 56/19 |
180 | 1881.05 | |
181 | 1891.5 | |
182 | 1901.96 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +1.78 | +0.00 | +3.57 | +3.92 | +1.78 | -3.83 | -5.10 | +0.00 | -4.75 | -2.55 | +3.57 |
Relative (%) | +17.1 | +0.0 | +34.2 | +37.5 | +17.1 | -36.6 | -48.8 | +0.0 | -45.4 | -24.4 | +34.2 | |
Steps (reduced) |
115 (115) |
182 (0) |
230 (48) |
267 (85) |
297 (115) |
322 (140) |
344 (162) |
364 (0) |
381 (17) |
397 (33) |
412 (48) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.85 | -2.04 | +3.92 | -3.31 | -3.76 | +1.78 | +2.23 | -2.96 | -3.83 | -0.76 | -4.57 |
Relative (%) | +8.1 | -19.6 | +37.5 | -31.7 | -36.0 | +17.1 | +21.4 | -28.4 | -36.6 | -7.3 | -43.7 | |
Steps (reduced) |
425 (61) |
437 (73) |
449 (85) |
459 (95) |
469 (105) |
479 (115) |
488 (124) |
496 (132) |
504 (140) |
512 (148) |
519 (155) |