183edt
Jump to navigation
Jump to search
Prime factorization
3 × 61
Step size
10.3932¢
Octave
115\183edt (1195.22¢)
Consistency limit
2
Distinct consistency limit
2
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |
← 182edt | 183edt | 184edt → |
183 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 183edt or 183ed3), is a nonoctave tuning system that divides the interval of 3/1 into 183 equal parts of about 10.4 ¢ each. Each step represents a frequency ratio of 31/183, or the 183rd root of 3. The major chord is 0-37-68.
Intervals
Steps | Cents | Hekts | Approximate ratios |
---|---|---|---|
0 | 0 | 0 | 1/1 |
1 | 10.39 | 7.1 | |
2 | 20.79 | 14.21 | |
3 | 31.18 | 21.31 | 55/54, 58/57 |
4 | 41.57 | 28.42 | |
5 | 51.97 | 35.52 | 34/33 |
6 | 62.36 | 42.62 | 57/55 |
7 | 72.75 | 49.73 | 49/47 |
8 | 83.15 | 56.83 | 43/41 |
9 | 93.54 | 63.93 | 19/18 |
10 | 103.93 | 71.04 | |
11 | 114.33 | 78.14 | 31/29 |
12 | 124.72 | 85.25 | 29/27 |
13 | 135.11 | 92.35 | |
14 | 145.5 | 99.45 | 25/23, 37/34, 62/57 |
15 | 155.9 | 106.56 | |
16 | 166.29 | 113.66 | |
17 | 176.68 | 120.77 | |
18 | 187.08 | 127.87 | 39/35 |
19 | 197.47 | 134.97 | 37/33, 65/58 |
20 | 207.86 | 142.08 | 62/55 |
21 | 218.26 | 149.18 | 42/37 |
22 | 228.65 | 156.28 | |
23 | 239.04 | 163.39 | 31/27 |
24 | 249.44 | 170.49 | |
25 | 259.83 | 177.6 | |
26 | 270.22 | 184.7 | |
27 | 280.62 | 191.8 | |
28 | 291.01 | 198.91 | 58/49 |
29 | 301.4 | 206.01 | 25/21 |
30 | 311.8 | 213.11 | |
31 | 322.19 | 220.22 | 47/39, 65/54 |
32 | 332.58 | 227.32 | |
33 | 342.98 | 234.43 | |
34 | 353.37 | 241.53 | |
35 | 363.76 | 248.63 | 37/30, 58/47 |
36 | 374.16 | 255.74 | |
37 | 384.55 | 262.84 | |
38 | 394.94 | 269.95 | 49/39 |
39 | 405.33 | 277.05 | |
40 | 415.73 | 284.15 | |
41 | 426.12 | 291.26 | |
42 | 436.51 | 298.36 | |
43 | 446.91 | 305.46 | |
44 | 457.3 | 312.57 | |
45 | 467.69 | 319.67 | 55/42 |
46 | 478.09 | 326.78 | |
47 | 488.48 | 333.88 | 65/49 |
48 | 498.87 | 340.98 | |
49 | 509.27 | 348.09 | 47/35 |
50 | 519.66 | 355.19 | |
51 | 530.05 | 362.3 | |
52 | 540.45 | 369.4 | |
53 | 550.84 | 376.5 | |
54 | 561.23 | 383.61 | 47/34, 65/47 |
55 | 571.63 | 390.71 | |
56 | 582.02 | 397.81 | 7/5 |
57 | 592.41 | 404.92 | |
58 | 602.81 | 412.02 | |
59 | 613.2 | 419.13 | 47/33 |
60 | 623.59 | 426.23 | |
61 | 633.99 | 433.33 | |
62 | 644.38 | 440.44 | 45/31 |
63 | 654.77 | 447.54 | 54/37 |
64 | 665.16 | 454.64 | |
65 | 675.56 | 461.75 | 34/23 |
66 | 685.95 | 468.85 | 55/37, 58/39 |
67 | 696.34 | 475.96 | |
68 | 706.74 | 483.06 | |
69 | 717.13 | 490.16 | |
70 | 727.52 | 497.27 | 35/23 |
71 | 737.92 | 504.37 | |
72 | 748.31 | 511.48 | 57/37 |
73 | 758.7 | 518.58 | |
74 | 769.1 | 525.68 | 39/25 |
75 | 779.49 | 532.79 | |
76 | 789.88 | 539.89 | 30/19 |
77 | 800.28 | 546.99 | 27/17 |
78 | 810.67 | 554.1 | |
79 | 821.06 | 561.2 | |
80 | 831.46 | 568.31 | 21/13, 55/34 |
81 | 841.85 | 575.41 | |
82 | 852.24 | 582.51 | 18/11 |
83 | 862.64 | 589.62 | 51/31 |
84 | 873.03 | 596.72 | |
85 | 883.42 | 603.83 | 5/3 |
86 | 893.81 | 610.93 | 57/34, 62/37 |
87 | 904.21 | 618.03 | |
88 | 914.6 | 625.14 | 39/23 |
89 | 924.99 | 632.24 | 29/17 |
90 | 935.39 | 639.34 | |
91 | 945.78 | 646.45 | 19/11 |
92 | 956.17 | 653.55 | 33/19 |
93 | 966.57 | 660.66 | |
94 | 976.96 | 667.76 | 51/29, 58/33 |
95 | 987.35 | 674.86 | 23/13 |
96 | 997.75 | 681.97 | |
97 | 1008.14 | 689.07 | 34/19 |
98 | 1018.53 | 696.17 | 9/5 |
99 | 1028.93 | 703.28 | |
100 | 1039.32 | 710.38 | 31/17 |
101 | 1049.71 | 717.49 | 11/6 |
102 | 1060.11 | 724.59 | |
103 | 1070.5 | 731.69 | 13/7 |
104 | 1080.89 | 738.8 | |
105 | 1091.29 | 745.9 | 62/33 |
106 | 1101.68 | 753.01 | 17/9 |
107 | 1112.07 | 760.11 | 19/10 |
108 | 1122.47 | 767.21 | 65/34 |
109 | 1132.86 | 774.32 | 25/13 |
110 | 1143.25 | 781.42 | |
111 | 1153.64 | 788.52 | 37/19 |
112 | 1164.04 | 795.63 | 49/25 |
113 | 1174.43 | 802.73 | 65/33 |
114 | 1184.82 | 809.84 | |
115 | 1195.22 | 816.94 | |
116 | 1205.61 | 824.04 | |
117 | 1216 | 831.15 | |
118 | 1226.4 | 838.25 | |
119 | 1236.79 | 845.36 | 47/23 |
120 | 1247.18 | 852.46 | 37/18 |
121 | 1257.58 | 859.56 | 31/15 |
122 | 1267.97 | 866.67 | |
123 | 1278.36 | 873.77 | |
124 | 1288.76 | 880.87 | |
125 | 1299.15 | 887.98 | |
126 | 1309.54 | 895.08 | 49/23 |
127 | 1319.94 | 902.19 | 15/7 |
128 | 1330.33 | 909.29 | |
129 | 1340.72 | 916.39 | |
130 | 1351.12 | 923.5 | |
131 | 1361.51 | 930.6 | |
132 | 1371.9 | 937.7 | |
133 | 1382.3 | 944.81 | |
134 | 1392.69 | 951.91 | |
135 | 1403.08 | 959.02 | |
136 | 1413.47 | 966.12 | |
137 | 1423.87 | 973.22 | |
138 | 1434.26 | 980.33 | |
139 | 1444.65 | 987.43 | |
140 | 1455.05 | 994.54 | |
141 | 1465.44 | 1001.64 | |
142 | 1475.83 | 1008.74 | |
143 | 1486.23 | 1015.85 | |
144 | 1496.62 | 1022.95 | |
145 | 1507.01 | 1030.05 | |
146 | 1517.41 | 1037.16 | |
147 | 1527.8 | 1044.26 | |
148 | 1538.19 | 1051.37 | |
149 | 1548.59 | 1058.47 | |
150 | 1558.98 | 1065.57 | |
151 | 1569.37 | 1072.68 | |
152 | 1579.77 | 1079.78 | |
153 | 1590.16 | 1086.89 | |
154 | 1600.55 | 1093.99 | 58/23, 63/25 |
155 | 1610.95 | 1101.09 | |
156 | 1621.34 | 1108.2 | |
157 | 1631.73 | 1115.3 | |
158 | 1642.13 | 1122.4 | |
159 | 1652.52 | 1129.51 | |
160 | 1662.91 | 1136.61 | |
161 | 1673.3 | 1143.72 | |
162 | 1683.7 | 1150.82 | 37/14 |
163 | 1694.09 | 1157.92 | |
164 | 1704.48 | 1165.03 | |
165 | 1714.88 | 1172.13 | 35/13 |
166 | 1725.27 | 1179.23 | |
167 | 1735.66 | 1186.34 | |
168 | 1746.06 | 1193.44 | |
169 | 1756.45 | 1200.55 | |
170 | 1766.84 | 1207.65 | |
171 | 1777.24 | 1214.75 | |
172 | 1787.63 | 1221.86 | |
173 | 1798.02 | 1228.96 | 65/23 |
174 | 1808.42 | 1236.07 | 54/19 |
175 | 1818.81 | 1243.17 | |
176 | 1829.2 | 1250.27 | |
177 | 1839.6 | 1257.38 | 55/19 |
178 | 1849.99 | 1264.48 | |
179 | 1860.38 | 1271.58 | |
180 | 1870.78 | 1278.69 | |
181 | 1881.17 | 1285.79 | |
182 | 1891.56 | 1292.9 | |
183 | 1901.96 | 1300 | 3/1 |
Harmonics
Harmonic | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -4.78 | +0.00 | +0.83 | -0.94 | -4.78 | -1.43 | -3.95 | +0.00 | +4.67 | -4.43 | +0.83 |
Relative (%) | -46.0 | +0.0 | +8.0 | -9.0 | -46.0 | -13.8 | -38.0 | +0.0 | +45.0 | -42.6 | +8.0 | |
Steps (reduced) |
115 (115) |
183 (0) |
231 (48) |
268 (85) |
298 (115) |
324 (141) |
346 (163) |
366 (0) |
384 (18) |
399 (33) |
414 (48) |
Harmonic | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -2.63 | +4.18 | -0.94 | +1.66 | +0.63 | -4.78 | -4.85 | -0.11 | -1.43 | +1.18 | -3.03 |
Relative (%) | -25.3 | +40.2 | -9.0 | +15.9 | +6.1 | -46.0 | -46.6 | -1.0 | -13.8 | +11.3 | -29.1 | |
Steps (reduced) |
427 (61) |
440 (74) |
451 (85) |
462 (96) |
472 (106) |
481 (115) |
490 (124) |
499 (133) |
507 (141) |
515 (149) |
522 (156) |