206edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 205edt206edt207edt →
Prime factorization 2 × 103
Step size 9.23279¢ 
Octave 130\206edt (1200.26¢) (→65\103edt)
Consistency limit 16
Distinct consistency limit 16

206 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 206edt or 206ed3), is a nonoctave tuning system that divides the interval of 3/1 into 206 equal parts of about 9.23 ¢ each. Each step represents a frequency ratio of 31/206, or the 206th root of 3.

Harmonics

Approximation of harmonics in 206edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +0.26 +0.00 +0.53 +1.99 +0.26 +1.14 +0.79 +0.00 +2.25 +3.44 +0.53
Relative (%) +2.8 +0.0 +5.7 +21.5 +2.8 +12.4 +8.5 +0.0 +24.4 +37.2 +5.7
Steps
(reduced)
130
(130)
206
(0)
260
(54)
302
(96)
336
(130)
365
(159)
390
(184)
412
(0)
432
(20)
450
(38)
466
(54)
Approximation of harmonics in 206edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +0.44 +1.41 +1.99 +1.05 -2.34 +0.26 -1.01 +2.51 +1.14 +3.70 +0.61
Relative (%) +4.8 +15.2 +21.5 +11.4 -25.4 +2.8 -11.0 +27.2 +12.4 +40.1 +6.6
Steps
(reduced)
481
(69)
495
(83)
508
(96)
520
(108)
531
(119)
542
(130)
552
(140)
562
(150)
571
(159)
580
(168)
588
(176)