190edt

From Xenharmonic Wiki
Jump to navigation Jump to search
Icon-Stub.png This page is a stub. You can help the Xenharmonic Wiki by expanding it.
← 189edt 190edt 191edt →
Prime factorization 2 × 5 × 19
Step size 10.0103¢ 
Octave 120\190edt (1201.23¢) (→12\19edt)
Consistency limit 4
Distinct consistency limit 4

190 equal divisions of the tritave, perfect twelfth, or 3rd harmonic (abbreviated 190edt or 190ed3), is a nonoctave tuning system that divides the interval of 3/1 into 190 equal parts of about 10⁠ ⁠¢ each. Each step represents a frequency ratio of 31/190, or the 190th root of 3.

Theory

This tuning tempers out 531441/524288 (Pythagorean comma) in the 3-limit.

Intervals

Steps Cents Hekts Approximate ratios
0 0 0 1/1
1 10.01 6.84
2 20.02 13.68
3 30.03 20.53 58/57
4 40.04 27.37
5 50.05 34.21 35/34
6 60.06 41.05
7 70.07 47.89
8 80.08 54.74 22/21
9 90.09 61.58
10 100.1 68.42 18/17
11 110.11 75.26
12 120.12 82.11
13 130.13 88.95 55/51
14 140.14 95.79
15 150.15 102.63 12/11
16 160.16 109.47 34/31, 45/41
17 170.17 116.32
18 180.19 123.16
19 190.2 130
20 200.21 136.84 46/41
21 210.22 143.68 35/31
22 220.23 150.53
23 230.24 157.37 8/7
24 240.25 164.21 31/27, 54/47
25 250.26 171.05
26 260.27 177.89 43/37, 50/43
27 270.28 184.74
28 280.29 191.58 20/17, 47/40
29 290.3 198.42 13/11
30 300.31 205.26
31 310.32 212.11 55/46
32 320.33 218.95 65/54
33 330.34 225.79 23/19
34 340.35 232.63
35 350.36 239.47
36 360.37 246.32 16/13
37 370.38 253.16 26/21, 57/46
38 380.39 260
39 390.4 266.84
40 400.41 273.68 29/23
41 410.42 280.53
42 420.43 287.37 51/40, 65/51
43 430.44 294.21
44 440.45 301.05 40/31, 58/45
45 450.46 307.89
46 460.47 314.74 30/23, 47/36
47 470.48 321.58 21/16
48 480.49 328.42 62/47
49 490.5 335.26
50 500.51 342.11
51 510.52 348.95 47/35, 51/38
52 520.54 355.79 27/20, 50/37
53 530.55 362.63
54 540.56 369.47 41/30
55 550.57 376.32 11/8
56 560.58 383.16 47/34, 65/47
57 570.59 390 57/41
58 580.6 396.84
59 590.61 403.68 38/27
60 600.62 410.53 41/29, 58/41
61 610.63 417.37
62 620.64 424.21 63/44
63 630.65 431.05
64 640.66 437.89 55/38
65 650.67 444.74 51/35
66 660.68 451.58
67 670.69 458.42
68 680.7 465.26 40/27
69 690.71 472.11
70 700.72 478.95
71 710.73 485.79
72 720.74 492.63 47/31
73 730.75 499.47
74 740.76 506.32 23/15
75 750.77 513.16 54/35
76 760.78 520 45/29
77 770.79 526.84
78 780.8 533.68
79 790.81 540.53 30/19
80 800.82 547.37 27/17
81 810.83 554.21
82 820.84 561.05
83 830.85 567.89 21/13
84 840.86 574.74 13/8
85 850.87 581.58
86 860.88 588.42 51/31
87 870.9 595.26
88 880.91 602.11
89 890.92 608.95
90 900.93 615.79
91 910.94 622.63 22/13
92 920.95 629.47
93 930.96 636.32
94 940.97 643.16 31/18
95 950.98 650
96 960.99 656.84 54/31
97 971 663.68
98 981.01 670.53
99 991.02 677.37 39/22, 62/35
100 1001.03 684.21 41/23
101 1011.04 691.05
102 1021.05 697.89
103 1031.06 704.74
104 1041.07 711.58 31/17
105 1051.08 718.42
106 1061.09 725.26 24/13
107 1071.1 732.11 13/7
108 1081.11 738.95
109 1091.12 745.79 62/33
110 1101.13 752.63 17/9
111 1111.14 759.47 19/10
112 1121.15 766.32 65/34
113 1131.16 773.16
114 1141.17 780 29/15
115 1151.18 786.84 35/18
116 1161.19 793.68 45/23
117 1171.2 800.53
118 1181.21 807.37
119 1191.22 814.21
120 1201.23 821.05
121 1211.25 827.89
122 1221.26 834.74
123 1231.27 841.58 55/27
124 1241.28 848.42
125 1251.29 855.26 35/17
126 1261.3 862.11
127 1271.31 868.95
128 1281.32 875.79 44/21, 65/31
129 1291.33 882.63
130 1301.34 889.47
131 1311.35 896.32
132 1321.36 903.16
133 1331.37 910 41/19
134 1341.38 916.84
135 1351.39 923.68 24/11
136 1361.4 930.53
137 1371.41 937.37
138 1381.42 944.21 20/9
139 1391.43 951.05 38/17
140 1401.44 957.89
141 1411.45 964.74
142 1421.46 971.58
143 1431.47 978.42 16/7
144 1441.48 985.26 23/10
145 1451.49 992.11
146 1461.5 998.95
147 1471.51 1005.79
148 1481.52 1012.63 40/17
149 1491.53 1019.47
150 1501.54 1026.32
151 1511.55 1033.16
152 1521.56 1040 65/27
153 1531.57 1046.84 46/19, 63/26
154 1541.58 1053.68 39/16
155 1551.59 1060.53
156 1561.61 1067.37
157 1571.62 1074.21 57/23
158 1581.63 1081.05
159 1591.64 1087.89
160 1601.65 1094.74 58/23
161 1611.66 1101.58 33/13
162 1621.67 1108.42 51/20
163 1631.68 1115.26
164 1641.69 1122.11
165 1651.7 1128.95
166 1661.71 1135.79 47/18
167 1671.72 1142.63 21/8
168 1681.73 1149.47
169 1691.74 1156.32
170 1701.75 1163.16
171 1711.76 1170
172 1721.77 1176.84
173 1731.78 1183.68
174 1741.79 1190.53 41/15
175 1751.8 1197.37 11/4
176 1761.81 1204.21
177 1771.82 1211.05
178 1781.83 1217.89
179 1791.84 1224.74
180 1801.85 1231.58 17/6
181 1811.86 1238.42
182 1821.87 1245.26 63/22
183 1831.88 1252.11
184 1841.89 1258.95
185 1851.9 1265.79
186 1861.91 1272.63
187 1871.92 1279.47
188 1881.93 1286.32
189 1891.94 1293.16
190 1901.96 1300 3/1

Harmonics

Approximation of harmonics in 190edt
Harmonic 2 3 4 5 6 7 8 9 10 11 12
Error Absolute (¢) +1.23 +0.00 +2.47 -3.45 +1.23 +4.64 +3.70 +0.00 -2.22 +2.95 +2.47
Relative (%) +12.3 +0.0 +24.7 -34.5 +12.3 +46.4 +37.0 +0.0 -22.2 +29.5 +24.7
Steps
(reduced)
120
(120)
190
(0)
240
(50)
278
(88)
310
(120)
337
(147)
360
(170)
380
(0)
398
(18)
415
(35)
430
(50)
Approximation of harmonics in 190edt
Harmonic 13 14 15 16 17 18 19 20 21 22 23
Error Absolute (¢) +4.04 -4.13 -3.45 +4.94 +0.09 +1.23 -2.28 -0.98 +4.64 +4.19 -2.70
Relative (%) +40.4 -41.3 -34.5 +49.3 +0.9 +12.3 -22.7 -9.8 +46.4 +41.8 -26.9
Steps
(reduced)
444
(64)
456
(76)
468
(88)
480
(100)
490
(110)
500
(120)
509
(129)
518
(138)
527
(147)
535
(155)
542
(162)