Optimal patent val: Difference between revisions
Wikispaces>genewardsmith **Imported revision 201834864 - Original comment: ** |
m Update linking |
||
(730 intermediate revisions by 14 users not shown) | |||
Line 1: | Line 1: | ||
The '''optimal patent val''' for a [[regular temperament]] is the unique [[patent val]] that [[support]]s the temperament with the lowest [[error]]. | |||
Given any temperament, which is characterized by the [[comma]]s it [[tempering out|tempers out]], there is a finite list of [[patent val]]s that temper out all the commas of the temperament in the same [[subgroup]]. The list is not guaranteed to contain any members, but in most actual circumstances it will. If the list is not empty, then among these patent vals will be found the one which has the lowest [[TE error]]; this is the (TE) optimal patent val for the temperament. Note that other definitions of error lead to different results. | |||
On this wiki, the optimal patent val for each temperament is given as the last patent val in the [[optimal ET sequence]], or stated explicitly in case it is not a member of the sequence. | |||
== | == Instructions == | ||
By tempering a JI scale using the ''N''-edo found on the list below we automatically temper it to the corresponding temperament. This can be done in [http://www.huygens-fokker.org/scala/ Scala] using the Quantize command: either type in "Quantize/consistent N" on the bottom, or use the pull-down menu under "Modify", check the box saying "Consistent" and type N (without a decimal point) into "Resolution". | |||
To limit the search range when finding the optimal patent val a useful observation is this: given ''N''-edo, and an odd prime ''q'' ≤ ''p'', if ''d'' is the absolute value in cents of the difference between the tuning of ''q'' given by the [[POTE tuning]] and the POTE tuning rounded to the nearest ''N''-edo value, then d < 600/''N'', from which it follows that N < 600/d. Likewise, if ''e'' is the absolute value of the error of ''q'' in the patent val tuning, then ''e'' < 600/''N'' and so ''N'' < 600/''e''. If ''N''-edo defines an optimal patent val, then the patent val will be identical to the val obtained by rounding the POTE tuning to the nearest N-edo value. We have two distances from the patent val, one to the POTE tuning and one to the the JI tuning, both bounded by 600/''N'', and so by the triangle inequality the distance from the JI tuning to the POTE tuning, which is the error of the prime ''q'' in the POTE tuning, is bounded by 1200/''N''. Hence, ''N'' < 1200/error(''q''). If now we take the minimum value for 1200/error(prime) for all the odd primes up to ''p'', we obtain an upper bound for ''N''. | |||
==7-limit | == Examples == | ||
Below are tabulated some values. In each case an identifier which uniquely identifies the temperament in question is given. In the codimension one case, where the temperament is defined by a single comma, the comma is given and used as a name. In other cases, for a temperament of rank ''n'', ''n'' independent vals are given. Normally this is by way of integers conjoined by ampersands, such as 2&10 for 7-limit pajara. This tells us we can use the 7-limit patent vals for 2 and 10 to define the temperament. In case ''n'' independent patent vals cannot be found, vals using the [[wart notation]] are given; this adjusts the nth prime mapping to its second-best value by appending the ''n''-th lower-case letter in alphabetical order. Thus, "12f" adjusts a patent val for 12 in the 13-limit or above, for instance {{val| 12 19 28 34 42 44 }}, to {{val| 12 19 28 34 42 45 }} (which is actually a better mapping, and hence more useful for this purpose.) | |||
=== 5-limit rank two === | |||
Comma: ET w/ optimal patent val: 1000 * badness | |||
16/15: [[8edo|8et]] 14.884 | |||
648/625: [[12edo|12et]] 47.231 | |||
27/25: [[14edo|14et]] 32.801 | |||
25/24: [[17edo|17et]] 13.028 | |||
250/243: [[22edo|22et]] 30.778 | |||
135/128: [[23edo|23et]] 39.556 | |||
128/125: [[39edo|39et]] 22.315 | |||
3125/3072: [[60edo|60et]] 39.163 | |||
2048/2025: [[80edo|80et]] 19.915 | |||
81/80: [[81edo|81et]] 7.381 | |||
20000/19683: [[109edo|109et]] 48.518 | |||
393216/390625: [[164edo|164et]] 40.603 | |||
2109375/2097152: [[296edo|296et]] 40.807 | |||
15625/15552: [[458edo|458et]] 13.234 | |||
78732/78125: [[539edo|539et]] 35.220 | |||
32805/32768: [[749edo|749et]] 4.259 | |||
1600000/1594323: [[873edo|873et]] 21.960 | |||
6115295232/6103515625: [[1400edo|1400et]] 31.181 | |||
1224440064/1220703125: [[1496edo|1496et]] 43.729 | |||
274877906944/274658203125: [[1559edo|1559et]] 20.576 | |||
31381059609/31250000000: [[2760edo|2760et]] 82.423 | |||
7629394531250/7625597484987: [[3501edo|3501et]] 17.191 | |||
=== 7-limit rank two === | |||
Name: ET w/ optimal patent val: Val name: 1000*badness | |||
[[Father family#Pater|Pater]]: [[3edo|3et]] 3&11b 53.001 | |||
[[Dicot family#Flat|Flat]]: [[4edo|4et]] 3&4 25.381 | |||
[[Trienstonic clan|Father]]: [[5edo|5et]] 3d&5 21.312 | |||
[[Archytas clan|Mother]]: [[5edo|5et]] 2&3 24.152 | |||
[[Meantone family|Sharptone]]: [[5edo|5et]] 5&7d 24.848 | |||
[[Father family#Baba|Baba]]: [[5edo|5et]] 1&5 44.321 | |||
[[Father family#Quint|Quint]]: [[5edo|5et]] 5&15cd 48.312 | |||
[[Bug family#Mite|Mite]]: [[5edo|5et]] 1cdd&5 54.770 | |||
[[Father family#Walid|Walid]]: [[6edo|6et]] 2&6 48.978 | |||
[[Dicot family|Dicot]]: [[7edo|7et]] 4&7 19.935 | |||
[[Dicot family#Jamesbond|Jamesbond]]: [[7edo|7et]] 7&14c 41.714 | |||
[[Septisemi temperaments#Oxygen|Oxygen]]: [[8edo|8et]] 7d&8 59.866 | |||
[[Bug family|Beep]]: [[9edo|9et]] 4&5 18.638 | |||
[[Mint temperaments#Progression|Progression]]: [[9edo|9et]] 9&17c 48.356 | |||
[[Augmented family#Deflated|Deflated]]: [[9edo|9et]] 3&9 59.079 | |||
[[Septisemi temperaments#Fluorine|Fluorine]]: [[9edo|9et]] 9&20bd 55.623 | |||
[[Dicot family|Sharp]]: [[10edo|10et]] 3d&7d 28.942 | |||
[[Dicot family|Decimal]]: [[10edo|10et]] 4&10 28.334 | |||
[[Septisemi temperaments#Sodium|Sodium]]: [[11edo|11et]] 4&11 55.814 | |||
[[Meantone family|Dominant]]: [[12edo|12et]] 5&7 20.690 | |||
[[Diminished family #Septimal diminished|Diminished]]: [[12edo|12et]] 4&12 22.401 | |||
[[Augmented family|August]]: [[12edo|12et]] 9&12 26.459 | |||
[[Augmented family#Hexe|Hexe]]: [[12edo|12et]] 6&12 57.730 | |||
[[Schismatic family#Schism|Schism]]: [[12edo|12et]] 12&29de 56.648 | |||
[[Mint temperaments#Ripple|Ripple]]: [[12edo|12et]] 12&23 59.735 | |||
[[Archytas clan|Blacksmith]]: [[15edo|15et]] 5&10 25.640 | |||
[[Trienstonic clan|Opossum]]: [[15edo|15et]] 7d&8d 40.650 | |||
[[Augmented family#Inflated|Inflated]]: [[15edo|15et]] 15&48bc 54.729 | |||
[[Pelogic family#Armodue|Armodue]]: [[16edo|16et]] 7&9 49.038 | |||
[[Dicot family#Dichotic|Dichotic]]: [[17edo|17et]] 3&7 37.565 | |||
[[Trienstonic clan|Octokaidecal]]: [[18edo|18et]] 10&18 36.747 | |||
[[Trienstonic clan|Uncle]]: [[18edo|18et]] 5&18 72.653 | |||
[[Marvel temperaments|Negri]]: [[19edo|19et]] 1&9 26.483 | |||
[[Meantone family|Godzilla]]: [[19edo|19et]] 5&19 26.747 | |||
[[Kleismic family|Keemun]]: [[19edo|19et]] 4&15 27.408 | |||
[[Trienstonic clan#Wallaby|Wallaby]]: [[19edo|19ccdd]] 2d&5c 58.468 | |||
[[Gamelismic clan|Gorgo]]: [[21edo|21et]] 5&16 46.385 | |||
[[Diaschismic family|Pajara]]: [[22edo|22et]] 2&10 20.033 | |||
[[Porcupine family#Hedgehog|Hedgehog]]: [[22edo|22et]] 14c&22 43.983 | |||
[[Jubilismic clan|Lemba]]: [[26edo|26et]] 10&16 62.208 | |||
[[Augmented family#Augene|Augene]]: [[27edo|27et]] 3&12 24.816 | |||
[[Augmented family#Niner|Niner]]: [[27edo|27et]] 9&18 67.157 | |||
[[Archytas clan|Beatles]]: [[27edo|27et]] 10&27 45.872 | |||
[[Porcupine family|Nautilus]]: [[29edo|29et]] 15&29 57.420 | |||
[[Meantone family|Mothra]]: [[31edo|31et]] 5&26 37.146 | |||
[[Meantone family|Squares]]: [[31edo|31et]] 31&45 45.993 | |||
[[Immunity family#Septimal immunity|Immunity]]: [[34edo|34et]] 5&29 77.631 | |||
[[Meantone family|Injera]]: [[38edo|38et]] 12&26 31.130 | |||
[[Augmented family|Triforce]]: [[39edo|39et]] 6&9 54.988 | |||
[[Magic family|Magic]]: [[41edo|41et]] 19&41 18.918 | |||
[[Gamelismic clan|Superkleismic]]: [[41edo|41et]] 15&26 47.932 | |||
[[Keemic temperaments#Quasitemp|Quasitemp]]: [[41edo|41et]] 4&37 60.269 | |||
[[Meantone family|Flattone]]: [[45edo|45et]] 7&19 38.553 | |||
[[Starling temperaments|Sensi]]: [[46edo|46et]] 19&27 25.622 | |||
[[Starling temperaments#Vines|Vines]]: [[46edo|46et]] 4&42 78.049 | |||
[[Jubilismic clan|Doublewide]]: [[48edo|48et]] 4&18 43.462 | |||
[[Archytas clan|Superpyth]]: [[49edo|49et]] 5&17 32.318 | |||
[[Archytas clan|Passion]]: [[49edo|49et]] 12&37 62.327 | |||
[[Porcupine family#Porky|Porky]]: [[51edo|51et]] 22&51 54.389 | |||
[[Marvel temperaments#Submajor-7-limit|Submajor]]: [[53edo|53et]] 10&33 60.533 | |||
[[Meantone family|Liese]]: [[55edo|55et]] 19&55 46.706 | |||
[[Sycamore family#Sycamore|Sycamore]]: [[56edo|56et]] 18&19 62.018 | |||
[[Diaschismic family|Diaschismic]]: [[58edo|58et]] 12&34 37.914 | |||
[[Porcupine family#Porcupine|Porcupine]]: [[59edo|59et]] 7&15 41.057 | |||
[[Starling temperaments#Kumonga|Kumonga]]: [[ |
Latest revision as of 12:34, 21 August 2025
The optimal patent val for a regular temperament is the unique patent val that supports the temperament with the lowest error.
Given any temperament, which is characterized by the commas it tempers out, there is a finite list of patent vals that temper out all the commas of the temperament in the same subgroup. The list is not guaranteed to contain any members, but in most actual circumstances it will. If the list is not empty, then among these patent vals will be found the one which has the lowest TE error; this is the (TE) optimal patent val for the temperament. Note that other definitions of error lead to different results.
On this wiki, the optimal patent val for each temperament is given as the last patent val in the optimal ET sequence, or stated explicitly in case it is not a member of the sequence.
Instructions
By tempering a JI scale using the N-edo found on the list below we automatically temper it to the corresponding temperament. This can be done in Scala using the Quantize command: either type in "Quantize/consistent N" on the bottom, or use the pull-down menu under "Modify", check the box saying "Consistent" and type N (without a decimal point) into "Resolution".
To limit the search range when finding the optimal patent val a useful observation is this: given N-edo, and an odd prime q ≤ p, if d is the absolute value in cents of the difference between the tuning of q given by the POTE tuning and the POTE tuning rounded to the nearest N-edo value, then d < 600/N, from which it follows that N < 600/d. Likewise, if e is the absolute value of the error of q in the patent val tuning, then e < 600/N and so N < 600/e. If N-edo defines an optimal patent val, then the patent val will be identical to the val obtained by rounding the POTE tuning to the nearest N-edo value. We have two distances from the patent val, one to the POTE tuning and one to the the JI tuning, both bounded by 600/N, and so by the triangle inequality the distance from the JI tuning to the POTE tuning, which is the error of the prime q in the POTE tuning, is bounded by 1200/N. Hence, N < 1200/error(q). If now we take the minimum value for 1200/error(prime) for all the odd primes up to p, we obtain an upper bound for N.
Examples
Below are tabulated some values. In each case an identifier which uniquely identifies the temperament in question is given. In the codimension one case, where the temperament is defined by a single comma, the comma is given and used as a name. In other cases, for a temperament of rank n, n independent vals are given. Normally this is by way of integers conjoined by ampersands, such as 2&10 for 7-limit pajara. This tells us we can use the 7-limit patent vals for 2 and 10 to define the temperament. In case n independent patent vals cannot be found, vals using the wart notation are given; this adjusts the nth prime mapping to its second-best value by appending the n-th lower-case letter in alphabetical order. Thus, "12f" adjusts a patent val for 12 in the 13-limit or above, for instance ⟨12 19 28 34 42 44], to ⟨12 19 28 34 42 45] (which is actually a better mapping, and hence more useful for this purpose.)
5-limit rank two
Comma: ET w/ optimal patent val: 1000 * badness
16/15: 8et 14.884
648/625: 12et 47.231
27/25: 14et 32.801
25/24: 17et 13.028
250/243: 22et 30.778
135/128: 23et 39.556
128/125: 39et 22.315
3125/3072: 60et 39.163
2048/2025: 80et 19.915
81/80: 81et 7.381
20000/19683: 109et 48.518
393216/390625: 164et 40.603
2109375/2097152: 296et 40.807
15625/15552: 458et 13.234
78732/78125: 539et 35.220
32805/32768: 749et 4.259
1600000/1594323: 873et 21.960
6115295232/6103515625: 1400et 31.181
1224440064/1220703125: 1496et 43.729
274877906944/274658203125: 1559et 20.576
31381059609/31250000000: 2760et 82.423
7629394531250/7625597484987: 3501et 17.191
7-limit rank two
Name: ET w/ optimal patent val: Val name: 1000*badness
Progression: 9et 9&17c 48.356
Diminished: 12et 4&12 22.401
Blacksmith: 15et 5&10 25.640
Octokaidecal: 18et 10&18 36.747
Superkleismic: 41et 15&26 47.932
Doublewide: 48et 4&18 43.462
Diaschismic: 58et 12&34 37.914
Hemithirds: 118et 25&31 44.284
Hemikleismic: 121et 15&38 52.054
Subpental: 130et 19&111 54.303
Tertiaseptal: 171et 31&109 12.995
Septidiasemi: 171et 10&151 44.115
Fifthplus: 171et 22&149 25.840
Seniority: 171et 26&145 44.877
Catakleismic: 197et 19&53 21.501
Quadritikleismic: 212et 4&68 39.231
Tritikleismic: 231et 15&57 56.337
Acrokleismic 270et 19&251 56.184
Septisuperfourth: 282et 22&86 59.241
Hemiwürschmidt: 328et 6&31 20.307
Hemififths: 338et 41&58 22.243
Bischismic: 378et 12&118 54.744
Septiquarter: 391et 5&94 53.760
Parakleismic: 415et 19&80 27.431
Countercata: 473et 34&53 52.128
Ennealimmal: 612et 27&45 3.610
Semidimfourth: 875et 91&99 55.245
Quasiorwell: 1111et 31&177 35.832
Amicable: 1131et 99&212 45.473
Septichrome 1308et 60&111 16.814
Sesquiquartififths: 1498et 41&89 11.244
Brahmagupta: 1547et 7&217 29.122
Enneadecal: 2185et 19&152 10.954
Subneutral: 2236et 31&348 45.792
Trillium: 4569et 53&441 30.852
Supermajor: 6214et 80&171 10.836
Semidimi: 8419et 171&863 15.075
Domain: 22038et 171&1164 13.979
7-limit rank three
Comma: ET w/ optimal patent val: 10^6 * badness
36/35: 12et 63.675
49/48: 19et 115.514
875/864: 41et 212.413
525/512: 45et 476.454
686/675: 46et 320.094
50/49: 48et 127.208
64/63: 49et 98.719
1029/1000: 55et 678.164
3125/3087: 94et 613.731
1728/1715: 111et 187.341
2430/2401: 137et 518.625
65625/65536: 171et 172.601
126/125: 185et 69.867
1029/1024: 190et 176.105
225/224: 197et 36.517
4000/3969: 215et 215.550
16875/16807: 224et 341.931
245/243: 283et 121.191
6144/6125: 381et 142.375
5120/5103: 391et 153.052
3136/3125: 446et 160.039
19683/19600: 587et 300.987
10976/10935: 695et 199.139
4802000/4782969: 1131et 1121.894
703125/702464: 2185et 149.828
2401/2400: 2749et 15.288
420175/419904: 4306et 86.449
4375/4374: 8419et 11.665
250047/250000: 12555et 21.301
78125000/78121827: 101654et 20.457
11-limit rank two
Name: ET w/ optimal patent val: Val name: 1000*badness
Neutrominant: 7et 7&10c 40.240
Progression: 9et 8d&9 26.050
Superpelog: 9et 9&14c 28.535
Octokaidecal: 10et 10&18e 30.235
Diminished: 12et 4&12 22.132
Domineering: 12et 7&12 21.978
[Diminished family #Hemidim|Hemidim]]: 12et 12&20b 54.965
Darjeeling: 15et 15&19e 27.648
Inflated: 15et 15&48bce 31.171
Domination: 17c 5e&12e 36.562
Meanenneadecal: 19et 12&19 21.182
Undevigintone: 19et 19&38d 36.387
Meanundeci: 19e 12e&19e 31.539
Rhinoceros: 19et 1ce&19 59.319
Cataleptic: 19et 19&34d 44.335
Vigintiduo: 22et 22&66de 48.372
Astrology: 22et 22&60de 39.151
Divination: 22et 22&38d 35.864
Quasisupra: 22et 17c&22 32.203
Crepuscular: 26et 26&34d 40.758
Demolished: 28et 12&28 26.574
Cuboctahedra: 31et 31&45 56.826
Migration: 31et 31&100de 25.516
Casablanca: 31et 31&42 67.291
Revelation: 31et 21&31 32.946
Superkleismic: 41et 15&26 25.659
Hemimiracle: 41et 20&21 59.232
Witchcraft: 41et 41&60e 30.706
Trismegistus: 41et 16&41 45.623
Twothirdtonic: 46et 9&37 40.768
Doublewide: 48et 4&18 32.058
Bimeantone: 50et 12&50 38.122
Cataclysmic: 53et 53&140d 39.954
Diaschismic: 58et 12&46 25.034
Hemififths: 58et 41&58 23.498
Infraorwell: 58et 9&49 40.721
Worschmidt: 65et 31&65 33.436
Hemikleismic: 68et 15&38 38.023
Catakleismic: 72et 19&53 21.849
Bikleismic: 72et 72&106 29.319
Ennealimnic: 72et 27e&72 20.697
Ennealiminal: 72et 27&45 31.123
Enneaportent: 72et 9&54 30.426
Paradigmic: 80et 19&80 41.720
Interpental: 96et 43&53 51.806
Hendecatonic: 99et 22&55 46.088
Hemithirds: 118et 31&87 19.003
Parakleismic: 118et 19&99 49.711
Subfourth: 121et 58&121 45.323
Würschmidt: 127et 31&96 24.413
Hemiwürschmidt: 130et 31&130 21.069
Hemimaquila: 130et 9&121 47.440
Monocerus: 154et 58&154 52.757
Parkleismic: 179et 80&179 55.844
Widefourth: 190et 16&71 40.785
Tertiaseptal: 202et 31&171 35.576
Metakleismic: 208et 87&121 48.570
Kleischismic: 212et 24&94 36.749
Quanharuk: 224et 41&142 31.549
Countercata: 227et 34&53 39.770
Tritikleismic: 231et 15&57 19.333
Subpental: 241et 19&111 45.352
Ennealimnic: 243et 72&171 20.347
Bischismic: 248et 12&118 28.160
Quasiorwell: 270et 31&208 17.540
Counteracro: 270et 270&1061e 42.572
Septisuperfourth: 282et 22&86 24.619
Quadritikleismic: 284et 4&68 23.406
Hemischis: 313et 53&130 36.289
Semiparakleismic: 316et 80&118 34.208
Octowerck: 320et 72&176 30.159
Hemiamity: 350et 46&106 31.307
Stearnscape: 354et 72&282 32.096
Catafourth: 363et 103&130 36.785
Alphaquarter: 391et 87&152 29.638
Novemkleismic: 405et 72&261 51.730
Subsemifourth: 407et 49&103 34.276
Semiennealimmal: 441et 72&441 34.196
Quatracot: 638et 190&224 41.043
Hemigamera: 646et 26&198 40.955
Brahmagupta: 665et 7&217 52.190
Trinealimmal: 1323et 27&243 29.812
Trillium: 1429et 53&441 46.758
Quasithird: 1448et 164&224 21.125
Bisesqui: 1498et 130&212 16.968
Hemiennealimmal: 1566et 72&198 6.283
Acrokleismic: 1639et 19&251 36.878
Quadraennealimmal: 1737et 342&1053 21.320
Semisupermajor: 2554et 80&342 12.773
11-limit rank three
Name: ET w/ optimal patent val: Val name: 10^5 * badness
Potassium: 19et 2&9&10 46.3665
Festival: 26et 2&10&26 68.8510
Calliope: 45et 7&12&19 52.9778
Big Brother: 53et 9&22&70 50.6556
Oxpecker: 77et 8d&15&31 69.945
Sensawer: 87et 41&46&73 79.632
Aplonis: 89et 19&31&58 64.7511
Malcolm: 94et 19e&41&53 124.957
Shrusus: 95et 22&46&95 87.6795
Apollo: 104et 12&19&22 52.9766
Supermagic: 104et 4&7&15 64.0789
Supernatural: 104et 19&22&82e 88.8164
Octarod: 104et 19&22&49 58.0664
Guanyin: 111et 9&22&58 41.1252
Bisector : 114et 14c&22&46 108.9026
Parahemif: 123et 17&24&58 134.547
Fantastic: 166et 12&22&50 74.3439
Portent: 190et 5&10&26 23.4092
Tolerant: 208et 5&41&80 103.923
Belobog: 248et 12&31&87 60.9402
Spectacle: 281et 10&31&281 49.8669
Jupiter: 282et 9&22&108 56.2368
Sensamagic: 283et 5&17&19 72.231
Trimyna: 294et 2&29&58 81.4047
Triglav: 316et 31&80&87 81.896
Varuna: 320et 12&26&46 41.8714
Semicanou: 410et 24&80&94 219.7478
Semiporwell: 480et 22&24&84 125.3053
History: 491et 15&29&43 60.3636
Indra: 703et 10&31&152 26.6020
Hanuman: 998et 15&57&152 49.965
Ganesha: 1502et 31&87&152 39.0462
Freya: 1566et 10&31&167 16.9702
Baldur: 1696et 4&58&72 16.6115
Skadi: 2014et 31&97&121 34.8944
Ennealimmic: 2619et 27&45&171 27.4685
Galaxy: 2665et 46&103&121 84.057
Van Gogh: 6992et 22&58&284 29.7565
13-limit rank two
Name: ET w/ optimal patent val: Val name: 1000*badness
Diminished: 4et 4&8d 19.509
Neutrominant: 7et 7&10c 27.214
Dominatrix: 7et 7&12f 18.289
Progression: 9et 8d&9 18.158
Blacksmith: 15et 5&10 20.498
Archytas clan: 15et 5e&15 22.325
Belauensis: 15et 14c&15 29.816
Darjeeling: 15et 15&19e 21.445
Domination: 17c 5e&12e 27.435
Progressive: 17c 2f&15f 32.721
Meanenneadecal: 19et 12f&19 21.182
Undevigintone: 19et 19&38df 22.933
Cataleptic: 19et 19&34d 27.343
Rhinoceros: 19et 1ce&19 39.343
Divination: 22et 22f&60e 34.551
Fleetwood: 22et 22&84bdf 31.835
Quasisupra: 22et 17c&22 30.219
Crepuscular: 26et 26&34d 24.368
Revelation: 31et 21&31 29.452
Lupercalia: 31et 15&31 21.328
Cypress: 31et 11cdeef&31 37.849
Würschmidt: 31et 31&65d 23.593
Worseschmidt: 31et 3def&31 34.382
Miraculous: 41et 10&31 18.669
Superkleismic: 41et 15&26 21.478
Hemimiracle: 41et 20&21 43.151
Witchcraft: 41et 41&60e 23.547
Trismegistus: 41et 16&41 33.081
Meridetone: 43et 43&117df 26.421
Twothirdtonic: 46et 9&37 25.941
Aerodactyl: 46et 5&46 33.986
Bimeantone: 50et 12f&50 28.817
Cataclysmic: 53et 53&140d 22.554
Hemikleismic: 53et 15&53 26.005
Doublethink: 53et 9&44 27.120
Diaschismic: 58et 46&58 18.926
Hemififths: 58et 41&58 19.090
Infraorwell: 58et 9&58 23.683
Semivalentine: 62et 16&30 32.749
Hemimeantone: 62et 43&62 31.433
Catakleismic: 72et 19&53 16.883
Bikleismic: 72et 72&106 21.814
Semimiracle: 72et 10&62 24.622
Enneaportent: 72et 9&54 22.322
Ennealiminal: 72et 27&72 30.325
Paradigmic: 80et 19&80 35.781
Soothsaying: 82et 22&60 55.443
Interpental: 96et 43&53 29.680
Benediction: 103et 31&72 15.715
Phicordial: 103et 10&103 33.198
Hemisecordite: 103et 41&62 25.589
Necromancy: 104et 22&41 25.275
Hemithirds: 118et 31&56 21.738
Kleischismic: 118et 24&94 37.640
Subfourth: 121et 58&121 23.800
Septisuperquad: 130et 22&108 33.038
Hemimaquila: 130et 9&121 24.445
Countercata: 140et 34&53 20.156
Omicronbeta: 144et 72&144 29.956
Monocerus: 154et 58&154 28.795
Tritikleismic: 159et 15&72 15.652
Tertiaseptal: 171et 31&171 36.876
Parkleismic: 179et 80&179 36.559
Widefourth: 190et 16&71 21.636
Metakleismic: 208et 87&121 24.371
Quadritikleismic: 212et 68&72 18.731
Quanharuk: 224et 41&142 21.392
Subpental: 241et 19&111 23.940
Ennealimnic: 243et 72&171 20.250
Subsemifourth: 255et 103&255 28.387
Hemiennealimmal: 270et 72&198 12.505
Acrokleismic: 270et 19&251 26.818
Counteracro: 270et 270&1331c 26.028
Septisuperfourth: 282et 130&282 22.887
Sextilifourths: 289et 29&130 25.276
Hemiwürschmidt: 291et 31&130 23.074
Hemischis: 313et 53&130 20.816
Octowerck: 320et 72&248 27.632
Novemkleismic: 333et 72&261 39.072
Catafourth: 363et 103&130 21.694
Bischismic: 378et 12&118 28.722
Hemigamera: 422et 26&198 20.416
Semiennealimmal: 441et 72&441 26.122
Fermionic: 546et 130&286 43.581
Quatracot: 638et 190&224 22.643
Quasithird: 836et 164&224 29.501
Semihemiennealimmal 954et 126&144 13.104
Quasiorwell: 1111et 31&239 17.921
Trillium: 1429et 53&441 19.393
13-limit rank three
Name: ET w/ optimal patent val: Val name: 10^5 * badness
Mockingbird: 15et 3&4&15 85.942
Potassium: 19et 9&10&11 73.346
Nightingale: 31et 3&15&28 83.714
Thrasher: 34et 12&15&19 87.636
Foreboding: 41et 5&10&26 87.267
Bluebird: 58et 12&15&31 91.548
Parahemif: 58et 17&24&58 119.366
Prodigious: 72et 2&29&41 89.974
Marvelcat: 72et 9&10&44 99.966
Sensawer: 87et 41&46&73 92.807
Malcolm: 94et 19e&41&53 107.452
Prodigal: 103et 31&72&84 88.910
Apollo: 104et 22&29&41 103.106
Cerberus: 130et 22&50&58 76.512
Portending: 159et 15&26&46 62.715
Momentous: 164et 10&31&46 83.202
Portentous: 190et 15&31&56 66.119
Tolerant: 208et 41&46&80 102.099
Spectacle: 209et 31&72&209 100.924
Trimyna: 232et 29&31&56 81.405
Borneo: 270et 15&72&111 54.937
History: 289et 15&29&43 53.955
Madagascar: 313et 19&53&58 56.006
Semiporwell: 328et 46&68&84 122.026
Semicanou: 410et 94&198&212 297.443
Hanuman: 535et 15&72&137 65.278
Greenland: 940et 58&72&198 44.343
Ennealimmic: 981et 27&72&171 75.488
Thunor: 1258et 26&46&178 34.135
Donar: 1448et 46&80&144 32.154
Galaxy: 2125et 46&103&121 46.311
Freya: 2615et 10&31&229 85.515