Diminished family

From Xenharmonic Wiki
Jump to navigation Jump to search
This is a list showing technical temperament data. For an explanation of what information is shown here, you may look at the technical data guide for regular temperaments.

The diminished family of temperaments tempers out the major diesis a.k.a. diminished comma, 648/625, the amount by which four 6/5 minor thirds exceed an octave, and so identifies the minor third with the quarter-octave. Hence it has the same 300-cent 6/5-approximations as 12edo.

Diminished

The generator of diminished can be taken as a fifth or a semitone, and 12edo, with its excellent fifth, is an obvious tuning, though a flatter fifth might be preferred to go with the flat minor third. Its ploidacot is tetraploid monocot.

Subgroup: 2.3.5

Comma list: 648/625

Mapping[4 0 3], 0 1 1]]

Optimal tunings:

  • WE: ~6/5 = 299.6476 ¢, ~3/2 = 698.6854 ¢ (~25/24 = 99.3903 ¢)
error map: -1.410 -4.679 +9.905]
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 698.2660 ¢ (~25/24 = 98.2660 ¢)
error map: 0.000 -3.689 +11.952]

Optimal ET sequence4, 8, 12

Badness (Sintel): 1.11

Septimal diminished

Subgroup: 2.3.5.7

Comma list: 36/35, 50/49

Mapping[4 0 3 5], 0 1 1 1]]

Optimal tunings:

  • WE: ~6/5 = 299.0347 ¢, ~3/2 = 697.2727 ¢ (~21/20 = 99.2032 ¢)
error map: -3.861 -8.543 +4.202 +19.759]
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 695.9619 ¢ (~21/20 = 95.9619 ¢)
error map: 0.000 -5.993 +9.648 +27.136]

Optimal ET sequence4, 8d, 12

Badness (Sintel): 0.567

11-limit

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 56/55

Mapping: [4 0 3 5 14], 0 1 1 1 0]]

Optimal tunings:

  • WE: ~6/5 = 297.8458 ¢, ~3/2 = 703.9277 ¢ (~15/14 = 108.2361 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 703.5558 ¢ (~15/14 = 103.5558 ¢)

Optimal ET sequence: 4, 8d, 12, 32cddee, 44cddeee

Badness (Sintel): 0.732

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 40/39, 50/49, 66/65

Mapping: [4 0 3 5 14 15], 0 1 1 1 0 0]]

Optimal tunings:

  • WE: ~6/5 = 297.2520 ¢, ~3/2 = 707.2352 ¢ (~15/14 = 112.7312 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 708.4648 ¢ (~15/14 = 108.4648 ¢)

Optimal ET sequence: 4, 8d, 12f, 20cdef, 32cddeefff

Badness (Sintel): 0.806

Demolished

Subgroup: 2.3.5.7.11

Comma list: 36/35, 45/44, 50/49

Mapping: [4 0 3 5 -5], 0 1 1 1 3]]

Optimal tunings:

  • WE: ~6/5 = 299.6308 ¢, ~3/2 = 689.0322 ¢ (~21/20 = 89.7707 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~3/2 = 688.9304 ¢ (~21/20 = 88.9304 ¢)

Optimal ET sequence: 4e, 8dee, 12, 28

Badness (Smith): 0.879

Cohedim

This extension has been documented in Graham Breed's temperament finder as hemidim, the same name as 11-limit 4e & 24 and 13-limit 4ef & 24. For the 11-limit 8bce & 12 temperament, cohedim arguably makes more sense. Its ploidacot is tetraploid alpha-dicot.

Subgroup: 2.3.5.7.11

Comma list: 36/35, 50/49, 125/121

Mapping: [4 1 4 6 6], 0 2 2 2 3]]

mapping generators: ~6/5, ~11/7

Optimal tunings:

  • WE: ~6/5 = 298.7799 ¢, ~11/7 = 795.0744 ¢ (~12/11 = 101.2653 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~11/7 = 796.0102 ¢ (~12/11 = 103.9898 ¢)

Optimal ET sequence: 8bce, 12

Badness (Sintel): 1.82

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 36/35, 50/49, 66/65, 125/121

Mapping: [4 1 4 6 6 7], 0 2 2 2 3 3]]

Optimal tunings:

  • WE: ~6/5 = 298.4646 ¢, ~11/7 = 793.6185 ¢ (~12/11 = 101.7754 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~11/7 = 794.7323 ¢ (~12/11 = 105.2677 ¢)

Optimal ET sequence: 8bcef, 12f

Badness (Sintel): 1.72

Hemidim

Hemidim tempers out 49/48 and may be described as the 4 & 24 temperament. Its ploidcot is tetraploid dicot.

Subgroup: 2.3.5.7

Comma list: 49/48, 648/625

Mapping[4 0 3 8], 0 2 2 1]]

mapping generators: ~6/5, ~7/4

Optimal tunings:

  • WE: ~6/5 = 300.5053 ¢, ~7/4 = 949.0409 ¢ (~36/35 = 47.5250 ¢)
error map: +2.021 -3.873 +13.284 -15.743]
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.2575 ¢ (~36/35 = 48.2575 ¢)
error map: 0.000 -5.440 +10.201 -20.568]

Optimal ET sequence4, …, 20c, 24

Badness (Sintel): 2.19

11-limit

Subgroup: 2.3.5.7.11

Comma list: 49/48, 77/75, 243/242

Mapping: [4 0 3 8 -2], 0 2 2 1 5]]

Optimal tunings:

  • WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.6958 ¢ (~36/35 = 48.4112 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.9065 ¢ (~36/35 = 48.9065 ¢)

Optimal ET sequence: 4e, 20ce, 24

Badness (Sintel): 1.87

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 49/48, 66/65, 77/75, 243/242

Mapping: [4 0 3 8 -2 -1], 0 2 2 1 5 5]]

Optimal tunings:

  • WE: ~6/5 = 300.4282 ¢, ~7/4 = 949.2440 ¢ (~36/35 = 47.8487 ¢)
  • CWE: ~6/5 = 300.0000 ¢, ~7/4 = 948.3581 ¢ (~36/35 = 48.3581 ¢)

Optimal ET sequence: 4ef, 24

Badness (Sintel): 1.61

Octonion

Octonion tempers out 245/243, and may be described as the 8d & 24 temperament. Its ploidacot is octoploid monocot.

It was formerly known as semidim but renamed to avoid confusion with another temperament of the same name.

Subgroup: 2.3.5.7

Comma list: 245/243, 392/375

Mapping[8 0 6 -3], 0 1 1 2]]

mapping generators: ~15/14, ~3

Optimal tunings:

  • WE: ~15/14 = 149.6673 ¢, ~3/2 = 705.4455 ¢ (~36/35 = 42.8910 ¢)
error map: -2.662 +0.828 +14.474 -12.260]
  • CWE: ~15/14 = 150.0000 ¢, ~3/2 = 704.9636 ¢ (~36/35 = 45.0364 ¢)
error map: 0.000 +3.008 +18.650 -8.899]

Optimal ET sequence8d, 16d, 24, 32c

Badness (Sintel): 2.72

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 77/75, 245/243

Mapping: [8 0 6 -3 15], 0 1 1 2 1]]

Optimal tunings:

  • WE: ~12/11 = 149.7102 ¢, ~3/2 = 705.2799 ¢ (~36/35 = 43.2712 ¢)
  • CWE: ~12/11 = 150.0000 ¢, ~3/2 = 704.9285 ¢ (~36/35 = 45.0715 ¢)

Optimal ET sequence: 8d, 16d, 24, 32c

Badness (Sintel): 1.57

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 66/65, 77/75, 507/500

Mapping: [8 0 6 -3 15 17], 0 1 1 2 1 1]]

Optimal tunings:

  • WE: ~12/11 = 149.6311 ¢, ~3/2 = 705.6367 ¢ (~36/35 = 42.5188 ¢)
  • CWE: ~12/11 = 150.0000 ¢, ~3/2 = 705.2777 ¢ (~36/35 = 44.7223 ¢)

Optimal ET sequence: 8d, 16d, 24, 32cf

Badness (Sintel): 1.26