954edo
← 953edo | 954edo | 955edo → |
954 equal divisions of the octave (abbreviated 954edo or 954ed2), also called 954-tone equal temperament (954tet) or 954 equal temperament (954et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 954 equal parts of about 1.26 ¢ each. Each step represents a frequency ratio of 21/954, or the 954th root of 2.
954edo is a very strong 17-limit system, distinctly consistent in the 17-limit, and is a zeta peak, integral and gap edo. The tuning of the primes to 17 are all flat, and the equal temperament tempers out the ennealimma, [1 -27 18⟩, in the 5-limit and 2401/2400 and 4375/4374 in the 7-limit, so that it supports the ennealimmal temperament. In the 11-limit it tempers out 3025/3024, 9801/9800, 43923/43904, and 151263/151250 so that it supports hemiennealimmal. In the 13-limit it tempers out 4225/4224 and 10648/10647 and in the 17-limit 2431/2430 and 2601/2600. It supports and gives the optimal patent val for the semihemiennealimmal temperament.
Prime harmonics
Harmonic | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.000 | -0.068 | -0.150 | -0.272 | -0.375 | -0.276 | -0.553 | +0.600 | -0.601 | +0.611 | -0.381 | +0.228 | -0.132 |
Relative (%) | +0.0 | -5.4 | -11.9 | -21.7 | -29.8 | -21.9 | -44.0 | +47.7 | -47.8 | +48.6 | -30.3 | +18.1 | -10.5 | |
Steps (reduced) |
954 (0) |
1512 (558) |
2215 (307) |
2678 (770) |
3300 (438) |
3530 (668) |
3899 (83) |
4053 (237) |
4315 (499) |
4635 (819) |
4726 (910) |
4970 (200) |
5111 (341) |
Harmonic | 43 | 47 | 53 | 59 | 61 | 67 | 71 | 73 | 79 | 83 | 89 | 97 | 101 | 103 | 107 | 109 | 113 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | +0.432 | -0.098 | -0.549 | -0.052 | +0.096 | -0.062 | +0.178 | -0.117 | +0.243 | +0.267 | +0.189 | -0.399 | +0.083 | +0.099 | -0.452 | +0.191 | -0.567 |
Relative (%) | +34.3 | -7.8 | -43.6 | -4.1 | +7.7 | -4.9 | +14.1 | -9.3 | +19.3 | +21.2 | +15.0 | -31.7 | +6.6 | +7.8 | -36.0 | +15.2 | -45.1 | |
Steps (reduced) |
5177 (407) |
5299 (529) |
5464 (694) |
5612 (842) |
5658 (888) |
5787 (63) |
5867 (143) |
5905 (181) |
6014 (290) |
6082 (358) |
6178 (454) |
6296 (572) |
6352 (628) |
6379 (655) |
6431 (707) |
6457 (733) |
6506 (782) |
Harmonic | 127 | 131 | 137 | 139 | 149 | 151 | 157 | 163 | 167 | 173 | 179 | 181 | 191 | 193 | 197 | 199 | 211 | 223 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.258 | +0.144 | +0.600 | -0.591 | -0.109 | -0.551 | -0.086 | +0.394 | -0.068 | +0.459 | +0.553 | +0.185 | +0.167 | -0.257 | -0.550 | -0.428 | +0.090 | -0.074 |
Relative (%) | -20.5 | +11.4 | +47.7 | -47.0 | -8.7 | -43.8 | -6.8 | +31.3 | -5.4 | +36.5 | +44.0 | +14.7 | +13.3 | -20.4 | -43.7 | -34.0 | +7.1 | -5.9 | |
Steps (reduced) |
6667 (943) |
6710 (32) |
6772 (94) |
6791 (113) |
6887 (209) |
6905 (227) |
6959 (281) |
7011 (333) |
7044 (366) |
7093 (415) |
7140 (462) |
7155 (477) |
7229 (551) |
7243 (565) |
7271 (593) |
7285 (607) |
7366 (688) |
7442 (764) |
Subsets and supersets
Since 954 = 2 × 32 × 53, 954edo has subset edos 2, 3, 6, 9, 18, 53, 106, 159, 318, 477.