User:Ganaram inukshuk/Sandbox
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
Deprecated template params
No params given
The following parameters of Template:NoTemplateGiven have been deprecated: NoParamsGiven. It is advised to save or relocate any information passed into these parameters to avoid information loss. |
A template param is deprecated without a new one given
The following parameters of Template:Example Template have been deprecated: Scale Info. It is advised to save or relocate any information passed into these parameters to avoid information loss. |
A template param is deprecated with a new one to be used
The following parameters of Template:Example Template have been deprecated: Scale Info. Please use the following parameters instead: Step Pattern, Step Ratio |
A template param is deprecated, but the functionality of those params are now part of a new template
The following parameters of Template:Example Template have been deprecated: Scale Info. Please use the following parameters in Template:Scale Info instead: Step Pattern, Step Ratio |
More data given
The following parameters of Template:Example Template have been deprecated: Scale Info. Please use the following parameters in Template:Scale Info instead: Scale Signature, Step Ratio Editors, please remember to separate the step pattern from the step ratio; for example, "3331331" becomes "LLLsLLs" and "3:1" |
MOS intro
First sentence:
- Single-period 2/1-equivalent: xL ys (TAMNAMS name tamnams-name), also called other-name, is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
- Multi-period 2/1-equivalent: nxL nys (TAMNAMS name tamnams-name), also called other-name, is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
- Single-period 3/1-equivalent: 3/1-equivalent xL ys, also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
- Multi-period 3/1-equivalent: 3/1-equivalent nxL nys, also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
- Single-period 3/2-equivalent: 3/2-equivalent xL ys, also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
- Multi-period 3/2-equivalent: 3/2-equivalent nxL nys, also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:
- Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.
Octave-equivalent relational info:
- Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
- Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.
Rothenprop:
- Single-period: Scales of this form are always proper because there is only one small step.
- Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
MOS tunings
NOTE: tables can be substituted, but it's at least a two-step process.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 18edo |
Soft (3:2) 21edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\13 | 0.0 | 0\18 | 0.0 | 0\21 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 1\13 | 92.3 | 1\18 | 66.7 | 2\21 | 114.3 | 26/25, 21/20 |
Major 1-oneirodegree | M1oneid | 2\13 | 184.6 | 3\18 | 200.0 | 3\21 | 171.4 | 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 3\13 | 276.9 | 4\18 | 266.7 | 5\21 | 285.7 | 7/6, 25/21 |
Major 2-oneirodegree | M2oneid | 4\13 | 369.2 | 6\18 | 400.0 | 6\21 | 342.9 | 16/13, 26/21, 5/4 |
Diminished 3-oneirodegree | d3oneid | 4\13 | 369.2 | 5\18 | 333.3 | 7\21 | 400.0 | 16/13, 26/21, 5/4 |
Perfect 3-oneirodegree | P3oneid | 5\13 | 461.5 | 7\18 | 466.7 | 8\21 | 457.1 | 13/10, 21/16 |
Minor 4-oneirodegree | m4oneid | 6\13 | 553.8 | 8\18 | 533.3 | 10\21 | 571.4 | 18/13, 25/18 |
Major 4-oneirodegree | M4oneid | 7\13 | 646.2 | 10\18 | 666.7 | 11\21 | 628.6 | 13/9 |
Perfect 5-oneirodegree | P5oneid | 8\13 | 738.5 | 11\18 | 733.3 | 13\21 | 742.9 | 20/13 |
Augmented 5-oneirodegree | A5oneid | 9\13 | 830.8 | 13\18 | 866.7 | 14\21 | 800.0 | 8/5, 21/13, 13/8 |
Minor 6-oneirodegree | m6oneid | 9\13 | 830.8 | 12\18 | 800.0 | 15\21 | 857.1 | 8/5, 21/13, 13/8 |
Major 6-oneirodegree | M6oneid | 10\13 | 923.1 | 14\18 | 933.3 | 16\21 | 914.3 | |
Minor 7-oneirodegree | m7oneid | 11\13 | 1015.4 | 15\18 | 1000.0 | 18\21 | 1028.6 | 16/9, 9/5 |
Major 7-oneirodegree | M7oneid | 12\13 | 1107.7 | 17\18 | 1133.3 | 19\21 | 1085.7 | 25/13 |
Perfect 8-oneirodegree | P8oneid | 13\13 | 1200.0 | 18\18 | 1200.0 | 21\21 | 1200.0 | 2/1 |
* Ratios shown are within the 2.5.9.13.21 subgroup. Automatic search may be inexact. Other interpretations are possible.
5L 3s only
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 18edo |
Soft (3:2) 21edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\13 | 0.0 | 0\18 | 0.0 | 0\21 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 1\13 | 92.3 | 1\18 | 66.7 | 2\21 | 114.3 | 16/15 |
Major 1-oneirodegree | M1oneid | 2\13 | 184.6 | 3\18 | 200.0 | 3\21 | 171.4 | 11/10, 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 3\13 | 276.9 | 4\18 | 266.7 | 5\21 | 285.7 | 7/6 |
Major 2-oneirodegree | M2oneid | 4\13 | 369.2 | 6\18 | 400.0 | 6\21 | 342.9 | 11/9, 16/13, 5/4 |
Diminished 3-oneirodegree | d3oneid | 4\13 | 369.2 | 5\18 | 333.3 | 7\21 | 400.0 | 11/9, 16/13, 5/4 |
Perfect 3-oneirodegree | P3oneid | 5\13 | 461.5 | 7\18 | 466.7 | 8\21 | 457.1 | 9/7 |
Minor 4-oneirodegree | m4oneid | 6\13 | 553.8 | 8\18 | 533.3 | 10\21 | 571.4 | 11/8, 18/13 |
Major 4-oneirodegree | M4oneid | 7\13 | 646.2 | 10\18 | 666.7 | 11\21 | 628.6 | 13/9, 16/11 |
Perfect 5-oneirodegree | P5oneid | 8\13 | 738.5 | 11\18 | 733.3 | 13\21 | 742.9 | 14/9 |
Augmented 5-oneirodegree | A5oneid | 9\13 | 830.8 | 13\18 | 866.7 | 14\21 | 800.0 | 8/5, 13/8, 18/11 |
Minor 6-oneirodegree | m6oneid | 9\13 | 830.8 | 12\18 | 800.0 | 15\21 | 857.1 | 8/5, 13/8, 18/11 |
Major 6-oneirodegree | M6oneid | 10\13 | 923.1 | 14\18 | 933.3 | 16\21 | 914.3 | 12/7 |
Minor 7-oneirodegree | m7oneid | 11\13 | 1015.4 | 15\18 | 1000.0 | 18\21 | 1028.6 | 16/9, 9/5, 20/11 |
Major 7-oneirodegree | M7oneid | 12\13 | 1107.7 | 17\18 | 1133.3 | 19\21 | 1085.7 | 15/8 |
Perfect 8-oneirodegree | P8oneid | 13\13 | 1200.0 | 18\18 | 1200.0 | 21\21 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Supersoft (4:3) 29edo |
Soft (3:2) 21edo |
Basic (2:1) 13edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\29 | 0.0 | 0\21 | 0.0 | 0\13 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 3\29 | 124.1 | 2\21 | 114.3 | 1\13 | 92.3 | 16/15, 14/13 |
Major 1-oneirodegree | M1oneid | 4\29 | 165.5 | 3\21 | 171.4 | 2\13 | 184.6 | 12/11, 11/10, 10/9 |
Minor 2-oneirodegree | m2oneid | 7\29 | 289.7 | 5\21 | 285.7 | 3\13 | 276.9 | 7/6, 6/5 |
Major 2-oneirodegree | M2oneid | 8\29 | 331.0 | 6\21 | 342.9 | 4\13 | 369.2 | 6/5, 11/9, 16/13 |
Diminished 3-oneirodegree | d3oneid | 10\29 | 413.8 | 7\21 | 400.0 | 4\13 | 369.2 | 5/4, 14/11 |
Perfect 3-oneirodegree | P3oneid | 11\29 | 455.2 | 8\21 | 457.1 | 5\13 | 461.5 | 9/7 |
Minor 4-oneirodegree | m4oneid | 14\29 | 579.3 | 10\21 | 571.4 | 6\13 | 553.8 | 11/8, 18/13, 7/5 |
Major 4-oneirodegree | M4oneid | 15\29 | 620.7 | 11\21 | 628.6 | 7\13 | 646.2 | 10/7, 13/9, 16/11 |
Perfect 5-oneirodegree | P5oneid | 18\29 | 744.8 | 13\21 | 742.9 | 8\13 | 738.5 | 14/9 |
Augmented 5-oneirodegree | A5oneid | 19\29 | 786.2 | 14\21 | 800.0 | 9\13 | 830.8 | 11/7, 8/5 |
Minor 6-oneirodegree | m6oneid | 21\29 | 869.0 | 15\21 | 857.1 | 9\13 | 830.8 | 13/8, 18/11, 5/3 |
Major 6-oneirodegree | M6oneid | 22\29 | 910.3 | 16\21 | 914.3 | 10\13 | 923.1 | 5/3, 12/7 |
Minor 7-oneirodegree | m7oneid | 25\29 | 1034.5 | 18\21 | 1028.6 | 11\13 | 1015.4 | 9/5, 20/11, 11/6 |
Major 7-oneirodegree | M7oneid | 26\29 | 1075.9 | 19\21 | 1085.7 | 12\13 | 1107.7 | 13/7, 15/8 |
Perfect 8-oneirodegree | P8oneid | 29\29 | 1200.0 | 21\21 | 1200.0 | 13\13 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Soft (3:2) 21edo |
Semisoft (5:3) 34edo |
Basic (2:1) 13edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\21 | 0.0 | 0\34 | 0.0 | 0\13 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 2\21 | 114.3 | 3\34 | 105.9 | 1\13 | 92.3 | 16/15, 14/13 |
Major 1-oneirodegree | M1oneid | 3\21 | 171.4 | 5\34 | 176.5 | 2\13 | 184.6 | 12/11, 11/10, 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 5\21 | 285.7 | 8\34 | 282.4 | 3\13 | 276.9 | 7/6 |
Major 2-oneirodegree | M2oneid | 6\21 | 342.9 | 10\34 | 352.9 | 4\13 | 369.2 | 11/9, 16/13 |
Diminished 3-oneirodegree | d3oneid | 7\21 | 400.0 | 11\34 | 388.2 | 4\13 | 369.2 | 16/13, 5/4, 14/11 |
Perfect 3-oneirodegree | P3oneid | 8\21 | 457.1 | 13\34 | 458.8 | 5\13 | 461.5 | 9/7 |
Minor 4-oneirodegree | m4oneid | 10\21 | 571.4 | 16\34 | 564.7 | 6\13 | 553.8 | 11/8, 18/13, 7/5 |
Major 4-oneirodegree | M4oneid | 11\21 | 628.6 | 18\34 | 635.3 | 7\13 | 646.2 | 10/7, 13/9, 16/11 |
Perfect 5-oneirodegree | P5oneid | 13\21 | 742.9 | 21\34 | 741.2 | 8\13 | 738.5 | 14/9 |
Augmented 5-oneirodegree | A5oneid | 14\21 | 800.0 | 23\34 | 811.8 | 9\13 | 830.8 | 11/7, 8/5, 13/8 |
Minor 6-oneirodegree | m6oneid | 15\21 | 857.1 | 24\34 | 847.1 | 9\13 | 830.8 | 13/8, 18/11 |
Major 6-oneirodegree | M6oneid | 16\21 | 914.3 | 26\34 | 917.6 | 10\13 | 923.1 | 12/7 |
Minor 7-oneirodegree | m7oneid | 18\21 | 1028.6 | 29\34 | 1023.5 | 11\13 | 1015.4 | 16/9, 9/5, 20/11, 11/6 |
Major 7-oneirodegree | M7oneid | 19\21 | 1085.7 | 31\34 | 1094.1 | 12\13 | 1107.7 | 13/7, 15/8 |
Perfect 8-oneirodegree | P8oneid | 21\21 | 1200.0 | 34\34 | 1200.0 | 13\13 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Semihard (5:2) 31edo |
Hard (3:1) 18edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\13 | 0.0 | 0\31 | 0.0 | 0\18 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 1\13 | 92.3 | 2\31 | 77.4 | 1\18 | 66.7 | |
Major 1-oneirodegree | M1oneid | 2\13 | 184.6 | 5\31 | 193.5 | 3\18 | 200.0 | 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 3\13 | 276.9 | 7\31 | 271.0 | 4\18 | 266.7 | 7/6 |
Major 2-oneirodegree | M2oneid | 4\13 | 369.2 | 10\31 | 387.1 | 6\18 | 400.0 | 5/4 |
Diminished 3-oneirodegree | d3oneid | 4\13 | 369.2 | 9\31 | 348.4 | 5\18 | 333.3 | 11/9, 16/13 |
Perfect 3-oneirodegree | P3oneid | 5\13 | 461.5 | 12\31 | 464.5 | 7\18 | 466.7 | |
Minor 4-oneirodegree | m4oneid | 6\13 | 553.8 | 14\31 | 541.9 | 8\18 | 533.3 | 11/8, 18/13 |
Major 4-oneirodegree | M4oneid | 7\13 | 646.2 | 17\31 | 658.1 | 10\18 | 666.7 | 13/9, 16/11 |
Perfect 5-oneirodegree | P5oneid | 8\13 | 738.5 | 19\31 | 735.5 | 11\18 | 733.3 | |
Augmented 5-oneirodegree | A5oneid | 9\13 | 830.8 | 22\31 | 851.6 | 13\18 | 866.7 | 13/8, 18/11 |
Minor 6-oneirodegree | m6oneid | 9\13 | 830.8 | 21\31 | 812.9 | 12\18 | 800.0 | 8/5 |
Major 6-oneirodegree | M6oneid | 10\13 | 923.1 | 24\31 | 929.0 | 14\18 | 933.3 | 12/7 |
Minor 7-oneirodegree | m7oneid | 11\13 | 1015.4 | 26\31 | 1006.5 | 15\18 | 1000.0 | 16/9, 9/5 |
Major 7-oneirodegree | M7oneid | 12\13 | 1107.7 | 29\31 | 1122.6 | 17\18 | 1133.3 | |
Perfect 8-oneirodegree | P8oneid | 13\13 | 1200.0 | 31\31 | 1200.0 | 18\18 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 18edo |
Superhard (4:1) 23edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\13 | 0.0 | 0\18 | 0.0 | 0\23 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 1\13 | 92.3 | 1\18 | 66.7 | 1\23 | 52.2 | |
Major 1-oneirodegree | M1oneid | 2\13 | 184.6 | 3\18 | 200.0 | 4\23 | 208.7 | 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 3\13 | 276.9 | 4\18 | 266.7 | 5\23 | 260.9 | 7/6 |
Major 2-oneirodegree | M2oneid | 4\13 | 369.2 | 6\18 | 400.0 | 8\23 | 417.4 | 5/4, 14/11 |
Diminished 3-oneirodegree | d3oneid | 4\13 | 369.2 | 5\18 | 333.3 | 6\23 | 313.0 | 6/5, 11/9 |
Perfect 3-oneirodegree | P3oneid | 5\13 | 461.5 | 7\18 | 466.7 | 9\23 | 469.6 | |
Minor 4-oneirodegree | m4oneid | 6\13 | 553.8 | 8\18 | 533.3 | 10\23 | 521.7 | 11/8 |
Major 4-oneirodegree | M4oneid | 7\13 | 646.2 | 10\18 | 666.7 | 13\23 | 678.3 | 16/11 |
Perfect 5-oneirodegree | P5oneid | 8\13 | 738.5 | 11\18 | 733.3 | 14\23 | 730.4 | |
Augmented 5-oneirodegree | A5oneid | 9\13 | 830.8 | 13\18 | 866.7 | 17\23 | 887.0 | 18/11, 5/3 |
Minor 6-oneirodegree | m6oneid | 9\13 | 830.8 | 12\18 | 800.0 | 15\23 | 782.6 | 11/7, 8/5 |
Major 6-oneirodegree | M6oneid | 10\13 | 923.1 | 14\18 | 933.3 | 18\23 | 939.1 | 12/7 |
Minor 7-oneirodegree | m7oneid | 11\13 | 1015.4 | 15\18 | 1000.0 | 19\23 | 991.3 | 16/9, 9/5 |
Major 7-oneirodegree | M7oneid | 12\13 | 1107.7 | 17\18 | 1133.3 | 22\23 | 1147.8 | |
Perfect 8-oneirodegree | P8oneid | 13\13 | 1200.0 | 18\18 | 1200.0 | 23\23 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
6-note mosses
Scale degree | Abbrev. | Basic (2:1) 7edo |
Hard (3:1) 8edo |
Soft (3:2) 13edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-amechdegree | P0amkd | 0\7 | 0.0 | 0\8 | 0.0 | 0\13 | 0.0 | 1/1 |
Perfect 1-amechdegree | P1amkd | 1\7 | 171.4 | 1\8 | 150.0 | 2\13 | 184.6 | 12/11, 11/10, 10/9 |
Augmented 1-amechdegree | A1amkd | 2\7 | 342.9 | 3\8 | 450.0 | 3\13 | 276.9 | 6/5, 11/9, 16/13 |
Minor 2-amechdegree | m2amkd | 2\7 | 342.9 | 2\8 | 300.0 | 4\13 | 369.2 | 6/5, 11/9, 16/13 |
Major 2-amechdegree | M2amkd | 3\7 | 514.3 | 4\8 | 600.0 | 5\13 | 461.5 | 4/3 |
Minor 3-amechdegree | m3amkd | 3\7 | 514.3 | 3\8 | 450.0 | 6\13 | 553.8 | 4/3 |
Major 3-amechdegree | M3amkd | 4\7 | 685.7 | 5\8 | 750.0 | 7\13 | 646.2 | 3/2 |
Minor 4-amechdegree | m4amkd | 4\7 | 685.7 | 4\8 | 600.0 | 8\13 | 738.5 | 3/2 |
Major 4-amechdegree | M4amkd | 5\7 | 857.1 | 6\8 | 900.0 | 9\13 | 830.8 | 13/8, 18/11, 5/3 |
Diminished 5-amechdegree | d5amkd | 5\7 | 857.1 | 5\8 | 750.0 | 10\13 | 923.1 | 13/8, 18/11, 5/3 |
Perfect 5-amechdegree | P5amkd | 6\7 | 1028.6 | 7\8 | 1050.0 | 11\13 | 1015.4 | 9/5, 20/11, 11/6 |
Perfect 6-amechdegree | P6amkd | 7\7 | 1200.0 | 8\8 | 1200.0 | 13\13 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 8edo |
Hard (3:1) 10edo |
Soft (3:2) 14edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-maldegree | P0mald | 0\8 | 0.0 | 0\10 | 0.0 | 0\14 | 0.0 | 1/1 |
Perfect 1-maldegree | P1mald | 1\8 | 150.0 | 1\10 | 120.0 | 2\14 | 171.4 | 14/13, 12/11, 11/10 |
Augmented 1-maldegree | A1mald | 2\8 | 300.0 | 3\10 | 360.0 | 3\14 | 257.1 | 6/5 |
Diminished 2-maldegree | d2mald | 2\8 | 300.0 | 2\10 | 240.0 | 4\14 | 342.9 | 6/5 |
Perfect 2-maldegree | P2mald | 3\8 | 450.0 | 4\10 | 480.0 | 5\14 | 428.6 | 9/7 |
Perfect 3-maldegree | P3mald | 4\8 | 600.0 | 5\10 | 600.0 | 7\14 | 600.0 | 7/5, 10/7 |
Perfect 4-maldegree | P4mald | 5\8 | 750.0 | 6\10 | 720.0 | 9\14 | 771.4 | 14/9 |
Augmented 4-maldegree | A4mald | 6\8 | 900.0 | 8\10 | 960.0 | 10\14 | 857.1 | 5/3 |
Diminished 5-maldegree | d5mald | 6\8 | 900.0 | 7\10 | 840.0 | 11\14 | 942.9 | 5/3 |
Perfect 5-maldegree | P5mald | 7\8 | 1050.0 | 9\10 | 1080.0 | 12\14 | 1028.6 | 20/11, 11/6, 13/7 |
Perfect 6-maldegree | P6mald | 8\8 | 1200.0 | 10\10 | 1200.0 | 14\14 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 9edo |
Hard (3:1) 12edo |
Soft (3:2) 15edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-triwddegree | P0twd | 0\9 | 0.0 | 0\12 | 0.0 | 0\15 | 0.0 | 1/1 |
Minor 1-triwddegree | m1twd | 1\9 | 133.3 | 1\12 | 100.0 | 2\15 | 160.0 | 16/15, 14/13, 12/11 |
Major 1-triwddegree | M1twd | 2\9 | 266.7 | 3\12 | 300.0 | 3\15 | 240.0 | 7/6 |
Perfect 2-triwddegree | P2twd | 3\9 | 400.0 | 4\12 | 400.0 | 5\15 | 400.0 | 5/4, 14/11 |
Minor 3-triwddegree | m3twd | 4\9 | 533.3 | 5\12 | 500.0 | 7\15 | 560.0 | 11/8 |
Major 3-triwddegree | M3twd | 5\9 | 666.7 | 7\12 | 700.0 | 8\15 | 640.0 | 16/11 |
Perfect 4-triwddegree | P4twd | 6\9 | 800.0 | 8\12 | 800.0 | 10\15 | 800.0 | 11/7, 8/5 |
Minor 5-triwddegree | m5twd | 7\9 | 933.3 | 9\12 | 900.0 | 12\15 | 960.0 | 12/7 |
Major 5-triwddegree | M5twd | 8\9 | 1066.7 | 11\12 | 1100.0 | 13\15 | 1040.0 | 11/6, 13/7, 15/8 |
Perfect 6-triwddegree | P6twd | 9\9 | 1200.0 | 12\12 | 1200.0 | 15\15 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 10edo |
Hard (3:1) 14edo |
Soft (3:2) 16edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-citrodegree | P0citd | 0\10 | 0.0 | 0\14 | 0.0 | 0\16 | 0.0 | 1/1 |
Diminished 1-citrodegree | d1citd | 1\10 | 120.0 | 1\14 | 85.7 | 2\16 | 150.0 | 16/15, 14/13 |
Perfect 1-citrodegree | P1citd | 2\10 | 240.0 | 3\14 | 257.1 | 3\16 | 225.0 | 8/7, 7/6 |
Perfect 2-citrodegree | P2citd | 3\10 | 360.0 | 4\14 | 342.9 | 5\16 | 375.0 | 11/9, 16/13, 5/4 |
Augmented 2-citrodegree | A2citd | 4\10 | 480.0 | 6\14 | 514.3 | 6\16 | 450.0 | 4/3 |
Perfect 3-citrodegree | P3citd | 5\10 | 600.0 | 7\14 | 600.0 | 8\16 | 600.0 | 7/5, 10/7 |
Diminished 4-citrodegree | d4citd | 6\10 | 720.0 | 8\14 | 685.7 | 10\16 | 750.0 | 3/2 |
Perfect 4-citrodegree | P4citd | 7\10 | 840.0 | 10\14 | 857.1 | 11\16 | 825.0 | 8/5, 13/8, 18/11 |
Perfect 5-citrodegree | P5citd | 8\10 | 960.0 | 11\14 | 942.9 | 13\16 | 975.0 | 12/7, 7/4 |
Augmented 5-citrodegree | A5citd | 9\10 | 1080.0 | 13\14 | 1114.3 | 14\16 | 1050.0 | 13/7, 15/8 |
Perfect 6-citrodegree | P6citd | 10\10 | 1200.0 | 14\14 | 1200.0 | 16\16 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 16edo |
Soft (3:2) 17edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-mechdegree | P0mkd | 0\11 | 0.0 | 0\16 | 0.0 | 0\17 | 0.0 | 1/1 |
Diminished 1-mechdegree | d1mkd | 1\11 | 109.1 | 1\16 | 75.0 | 2\17 | 141.2 | 16/15, 14/13 |
Perfect 1-mechdegree | P1mkd | 2\11 | 218.2 | 3\16 | 225.0 | 3\17 | 211.8 | 9/8, 8/7 |
Minor 2-mechdegree | m2mkd | 3\11 | 327.3 | 4\16 | 300.0 | 5\17 | 352.9 | 6/5, 11/9 |
Major 2-mechdegree | M2mkd | 4\11 | 436.4 | 6\16 | 450.0 | 6\17 | 423.5 | 14/11, 9/7 |
Minor 3-mechdegree | m3mkd | 5\11 | 545.5 | 7\16 | 525.0 | 8\17 | 564.7 | 11/8, 18/13 |
Major 3-mechdegree | M3mkd | 6\11 | 654.5 | 9\16 | 675.0 | 9\17 | 635.3 | 13/9, 16/11 |
Minor 4-mechdegree | m4mkd | 7\11 | 763.6 | 10\16 | 750.0 | 11\17 | 776.5 | 14/9, 11/7 |
Major 4-mechdegree | M4mkd | 8\11 | 872.7 | 12\16 | 900.0 | 12\17 | 847.1 | 18/11, 5/3 |
Perfect 5-mechdegree | P5mkd | 9\11 | 981.8 | 13\16 | 975.0 | 14\17 | 988.2 | 7/4, 16/9 |
Augmented 5-mechdegree | A5mkd | 10\11 | 1090.9 | 15\16 | 1125.0 | 15\17 | 1058.8 | 13/7, 15/8 |
Perfect 6-mechdegree | P6mkd | 11\11 | 1200.0 | 16\16 | 1200.0 | 17\17 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
7-note mosses
Scale degree | Abbrev. | Basic (2:1) 8edo |
Hard (3:1) 9edo |
Soft (3:2) 15edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-ondegree | P0ond | 0\8 | 0.0 | 0\9 | 0.0 | 0\15 | 0.0 | 1/1 |
Perfect 1-ondegree | P1ond | 1\8 | 150.0 | 1\9 | 133.3 | 2\15 | 160.0 | 14/13, 12/11, 11/10 |
Augmented 1-ondegree | A1ond | 2\8 | 300.0 | 3\9 | 400.0 | 3\15 | 240.0 | 6/5 |
Minor 2-ondegree | m2ond | 2\8 | 300.0 | 2\9 | 266.7 | 4\15 | 320.0 | 6/5 |
Major 2-ondegree | M2ond | 3\8 | 450.0 | 4\9 | 533.3 | 5\15 | 400.0 | 9/7 |
Minor 3-ondegree | m3ond | 3\8 | 450.0 | 3\9 | 400.0 | 6\15 | 480.0 | 9/7 |
Major 3-ondegree | M3ond | 4\8 | 600.0 | 5\9 | 666.7 | 7\15 | 560.0 | 7/5, 10/7 |
Minor 4-ondegree | m4ond | 4\8 | 600.0 | 4\9 | 533.3 | 8\15 | 640.0 | 7/5, 10/7 |
Major 4-ondegree | M4ond | 5\8 | 750.0 | 6\9 | 800.0 | 9\15 | 720.0 | 14/9 |
Minor 5-ondegree | m5ond | 5\8 | 750.0 | 5\9 | 666.7 | 10\15 | 800.0 | 14/9 |
Major 5-ondegree | M5ond | 6\8 | 900.0 | 7\9 | 933.3 | 11\15 | 880.0 | 5/3 |
Diminished 6-ondegree | d6ond | 6\8 | 900.0 | 6\9 | 800.0 | 12\15 | 960.0 | 5/3 |
Perfect 6-ondegree | P6ond | 7\8 | 1050.0 | 8\9 | 1066.7 | 13\15 | 1040.0 | 20/11, 11/6, 13/7 |
Perfect 7-ondegree | P7ond | 8\8 | 1200.0 | 9\9 | 1200.0 | 15\15 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 9edo |
Hard (3:1) 11edo |
Soft (3:2) 16edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-peldegree | P0peld | 0\9 | 0.0 | 0\11 | 0.0 | 0\16 | 0.0 | 1/1 |
Minor 1-peldegree | m1peld | 1\9 | 133.3 | 1\11 | 109.1 | 2\16 | 150.0 | 16/15, 14/13, 12/11 |
Major 1-peldegree | M1peld | 2\9 | 266.7 | 3\11 | 327.3 | 3\16 | 225.0 | 7/6 |
Minor 2-peldegree | m2peld | 2\9 | 266.7 | 2\11 | 218.2 | 4\16 | 300.0 | 7/6 |
Major 2-peldegree | M2peld | 3\9 | 400.0 | 4\11 | 436.4 | 5\16 | 375.0 | 5/4, 14/11 |
Diminished 3-peldegree | d3peld | 3\9 | 400.0 | 3\11 | 327.3 | 6\16 | 450.0 | 5/4, 14/11 |
Perfect 3-peldegree | P3peld | 4\9 | 533.3 | 5\11 | 545.5 | 7\16 | 525.0 | 11/8 |
Perfect 4-peldegree | P4peld | 5\9 | 666.7 | 6\11 | 654.5 | 9\16 | 675.0 | 16/11 |
Augmented 4-peldegree | A4peld | 6\9 | 800.0 | 8\11 | 872.7 | 10\16 | 750.0 | 11/7, 8/5 |
Minor 5-peldegree | m5peld | 6\9 | 800.0 | 7\11 | 763.6 | 11\16 | 825.0 | 11/7, 8/5 |
Major 5-peldegree | M5peld | 7\9 | 933.3 | 9\11 | 981.8 | 12\16 | 900.0 | 12/7 |
Minor 6-peldegree | m6peld | 7\9 | 933.3 | 8\11 | 872.7 | 13\16 | 975.0 | 12/7 |
Major 6-peldegree | M6peld | 8\9 | 1066.7 | 10\11 | 1090.9 | 14\16 | 1050.0 | 11/6, 13/7, 15/8 |
Perfect 7-peldegree | P7peld | 9\9 | 1200.0 | 11\11 | 1200.0 | 16\16 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 10edo |
Hard (3:1) 13edo |
Soft (3:2) 17edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-moshdegree | P0moshd | 0\10 | 0.0 | 0\13 | 0.0 | 0\17 | 0.0 | 1/1 |
Minor 1-moshdegree | m1moshd | 1\10 | 120.0 | 1\13 | 92.3 | 2\17 | 141.2 | 16/15, 14/13 |
Major 1-moshdegree | M1moshd | 2\10 | 240.0 | 3\13 | 276.9 | 3\17 | 211.8 | 8/7, 7/6 |
Diminished 2-moshdegree | d2moshd | 2\10 | 240.0 | 2\13 | 184.6 | 4\17 | 282.4 | 8/7, 7/6 |
Perfect 2-moshdegree | P2moshd | 3\10 | 360.0 | 4\13 | 369.2 | 5\17 | 352.9 | 11/9, 16/13, 5/4 |
Minor 3-moshdegree | m3moshd | 4\10 | 480.0 | 5\13 | 461.5 | 7\17 | 494.1 | 4/3 |
Major 3-moshdegree | M3moshd | 5\10 | 600.0 | 7\13 | 646.2 | 8\17 | 564.7 | 7/5, 10/7 |
Minor 4-moshdegree | m4moshd | 5\10 | 600.0 | 6\13 | 553.8 | 9\17 | 635.3 | 7/5, 10/7 |
Major 4-moshdegree | M4moshd | 6\10 | 720.0 | 8\13 | 738.5 | 10\17 | 705.9 | 3/2 |
Perfect 5-moshdegree | P5moshd | 7\10 | 840.0 | 9\13 | 830.8 | 12\17 | 847.1 | 8/5, 13/8, 18/11 |
Augmented 5-moshdegree | A5moshd | 8\10 | 960.0 | 11\13 | 1015.4 | 13\17 | 917.6 | 12/7, 7/4 |
Minor 6-moshdegree | m6moshd | 8\10 | 960.0 | 10\13 | 923.1 | 14\17 | 988.2 | 12/7, 7/4 |
Major 6-moshdegree | M6moshd | 9\10 | 1080.0 | 12\13 | 1107.7 | 15\17 | 1058.8 | 13/7, 15/8 |
Perfect 7-moshdegree | P7moshd | 10\10 | 1200.0 | 13\13 | 1200.0 | 17\17 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 15edo |
Soft (3:2) 18edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-smidegree | P0smid | 0\11 | 0.0 | 0\15 | 0.0 | 0\18 | 0.0 | 1/1 |
Minor 1-smidegree | m1smid | 1\11 | 109.1 | 1\15 | 80.0 | 2\18 | 133.3 | 16/15, 14/13 |
Major 1-smidegree | M1smid | 2\11 | 218.2 | 3\15 | 240.0 | 3\18 | 200.0 | 9/8, 8/7 |
Perfect 2-smidegree | P2smid | 3\11 | 327.3 | 4\15 | 320.0 | 5\18 | 333.3 | 6/5, 11/9 |
Augmented 2-smidegree | A2smid | 4\11 | 436.4 | 6\15 | 480.0 | 6\18 | 400.0 | 14/11, 9/7 |
Minor 3-smidegree | m3smid | 4\11 | 436.4 | 5\15 | 400.0 | 7\18 | 466.7 | 14/11, 9/7 |
Major 3-smidegree | M3smid | 5\11 | 545.5 | 7\15 | 560.0 | 8\18 | 533.3 | 11/8, 18/13 |
Minor 4-smidegree | m4smid | 6\11 | 654.5 | 8\15 | 640.0 | 10\18 | 666.7 | 13/9, 16/11 |
Major 4-smidegree | M4smid | 7\11 | 763.6 | 10\15 | 800.0 | 11\18 | 733.3 | 14/9, 11/7 |
Diminished 5-smidegree | d5smid | 7\11 | 763.6 | 9\15 | 720.0 | 12\18 | 800.0 | 14/9, 11/7 |
Perfect 5-smidegree | P5smid | 8\11 | 872.7 | 11\15 | 880.0 | 13\18 | 866.7 | 18/11, 5/3 |
Minor 6-smidegree | m6smid | 9\11 | 981.8 | 12\15 | 960.0 | 15\18 | 1000.0 | 7/4, 16/9 |
Major 6-smidegree | M6smid | 10\11 | 1090.9 | 14\15 | 1120.0 | 16\18 | 1066.7 | 13/7, 15/8 |
Perfect 7-smidegree | P7smid | 11\11 | 1200.0 | 15\15 | 1200.0 | 18\18 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 12edo |
Hard (3:1) 17edo |
Soft (3:2) 19edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-diadegree | P0diad | 0\12 | 0.0 | 0\17 | 0.0 | 0\19 | 0.0 | 1/1 |
Minor 1-diadegree | m1diad | 1\12 | 100.0 | 1\17 | 70.6 | 2\19 | 126.3 | 16/15, 14/13 |
Major 1-diadegree | M1diad | 2\12 | 200.0 | 3\17 | 211.8 | 3\19 | 189.5 | 10/9, 9/8 |
Minor 2-diadegree | m2diad | 3\12 | 300.0 | 4\17 | 282.4 | 5\19 | 315.8 | 6/5 |
Major 2-diadegree | M2diad | 4\12 | 400.0 | 6\17 | 423.5 | 6\19 | 378.9 | 5/4, 14/11 |
Perfect 3-diadegree | P3diad | 5\12 | 500.0 | 7\17 | 494.1 | 8\19 | 505.3 | 4/3 |
Augmented 3-diadegree | A3diad | 6\12 | 600.0 | 9\17 | 635.3 | 9\19 | 568.4 | 7/5, 10/7 |
Diminished 4-diadegree | d4diad | 6\12 | 600.0 | 8\17 | 564.7 | 10\19 | 631.6 | 7/5, 10/7 |
Perfect 4-diadegree | P4diad | 7\12 | 700.0 | 10\17 | 705.9 | 11\19 | 694.7 | 3/2 |
Minor 5-diadegree | m5diad | 8\12 | 800.0 | 11\17 | 776.5 | 13\19 | 821.1 | 11/7, 8/5 |
Major 5-diadegree | M5diad | 9\12 | 900.0 | 13\17 | 917.6 | 14\19 | 884.2 | 5/3 |
Minor 6-diadegree | m6diad | 10\12 | 1000.0 | 14\17 | 988.2 | 16\19 | 1010.5 | 16/9, 9/5 |
Major 6-diadegree | M6diad | 11\12 | 1100.0 | 16\17 | 1129.4 | 17\19 | 1073.7 | 13/7, 15/8 |
Perfect 7-diadegree | P7diad | 12\12 | 1200.0 | 17\17 | 1200.0 | 19\19 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 19edo |
Soft (3:2) 20edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-archdegree | P0arcd | 0\13 | 0.0 | 0\19 | 0.0 | 0\20 | 0.0 | 1/1 |
Diminished 1-archdegree | d1arcd | 1\13 | 92.3 | 1\19 | 63.2 | 2\20 | 120.0 | 16/15 |
Perfect 1-archdegree | P1arcd | 2\13 | 184.6 | 3\19 | 189.5 | 3\20 | 180.0 | 11/10, 10/9, 9/8 |
Minor 2-archdegree | m2arcd | 3\13 | 276.9 | 4\19 | 252.6 | 5\20 | 300.0 | 7/6 |
Major 2-archdegree | M2arcd | 4\13 | 369.2 | 6\19 | 378.9 | 6\20 | 360.0 | 11/9, 16/13, 5/4 |
Minor 3-archdegree | m3arcd | 5\13 | 461.5 | 7\19 | 442.1 | 8\20 | 480.0 | 9/7 |
Major 3-archdegree | M3arcd | 6\13 | 553.8 | 9\19 | 568.4 | 9\20 | 540.0 | 11/8, 18/13 |
Minor 4-archdegree | m4arcd | 7\13 | 646.2 | 10\19 | 631.6 | 11\20 | 660.0 | 13/9, 16/11 |
Major 4-archdegree | M4arcd | 8\13 | 738.5 | 12\19 | 757.9 | 12\20 | 720.0 | 14/9 |
Minor 5-archdegree | m5arcd | 9\13 | 830.8 | 13\19 | 821.1 | 14\20 | 840.0 | 8/5, 13/8, 18/11 |
Major 5-archdegree | M5arcd | 10\13 | 923.1 | 15\19 | 947.4 | 15\20 | 900.0 | 12/7 |
Perfect 6-archdegree | P6arcd | 11\13 | 1015.4 | 16\19 | 1010.5 | 17\20 | 1020.0 | 16/9, 9/5, 20/11 |
Augmented 6-archdegree | A6arcd | 12\13 | 1107.7 | 18\19 | 1136.8 | 18\20 | 1080.0 | 15/8 |
Perfect 7-archdegree | P7arcd | 13\13 | 1200.0 | 19\19 | 1200.0 | 20\20 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
8-note mosses
Scale degree | Abbrev. | Basic (2:1) 9edo |
Hard (3:1) 10edo |
Soft (3:2) 17edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-apinedegree | P0apd | 0\9 | 0.0 | 0\10 | 0.0 | 0\17 | 0.0 | 1/1 |
Perfect 1-apinedegree | P1apd | 1\9 | 133.3 | 1\10 | 120.0 | 2\17 | 141.2 | 16/15, 14/13, 12/11 |
Augmented 1-apinedegree | A1apd | 2\9 | 266.7 | 3\10 | 360.0 | 3\17 | 211.8 | 7/6 |
Minor 2-apinedegree | m2apd | 2\9 | 266.7 | 2\10 | 240.0 | 4\17 | 282.4 | 7/6 |
Major 2-apinedegree | M2apd | 3\9 | 400.0 | 4\10 | 480.0 | 5\17 | 352.9 | 5/4, 14/11 |
Minor 3-apinedegree | m3apd | 3\9 | 400.0 | 3\10 | 360.0 | 6\17 | 423.5 | 5/4, 14/11 |
Major 3-apinedegree | M3apd | 4\9 | 533.3 | 5\10 | 600.0 | 7\17 | 494.1 | 11/8 |
Minor 4-apinedegree | m4apd | 4\9 | 533.3 | 4\10 | 480.0 | 8\17 | 564.7 | 11/8 |
Major 4-apinedegree | M4apd | 5\9 | 666.7 | 6\10 | 720.0 | 9\17 | 635.3 | 16/11 |
Minor 5-apinedegree | m5apd | 5\9 | 666.7 | 5\10 | 600.0 | 10\17 | 705.9 | 16/11 |
Major 5-apinedegree | M5apd | 6\9 | 800.0 | 7\10 | 840.0 | 11\17 | 776.5 | 11/7, 8/5 |
Minor 6-apinedegree | m6apd | 6\9 | 800.0 | 6\10 | 720.0 | 12\17 | 847.1 | 11/7, 8/5 |
Major 6-apinedegree | M6apd | 7\9 | 933.3 | 8\10 | 960.0 | 13\17 | 917.6 | 12/7 |
Diminished 7-apinedegree | d7apd | 7\9 | 933.3 | 7\10 | 840.0 | 14\17 | 988.2 | 12/7 |
Perfect 7-apinedegree | P7apd | 8\9 | 1066.7 | 9\10 | 1080.0 | 15\17 | 1058.8 | 11/6, 13/7, 15/8 |
Perfect 8-apinedegree | P8apd | 9\9 | 1200.0 | 10\10 | 1200.0 | 17\17 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 10edo |
Hard (3:1) 12edo |
Soft (3:2) 18edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-subardegree | P0sbd | 0\10 | 0.0 | 0\12 | 0.0 | 0\18 | 0.0 | 1/1 |
Perfect 1-subardegree | P1sbd | 1\10 | 120.0 | 1\12 | 100.0 | 2\18 | 133.3 | 16/15, 14/13 |
Augmented 1-subardegree | A1sbd | 2\10 | 240.0 | 3\12 | 300.0 | 3\18 | 200.0 | 8/7, 7/6 |
Minor 2-subardegree | m2sbd | 2\10 | 240.0 | 2\12 | 200.0 | 4\18 | 266.7 | 8/7, 7/6 |
Major 2-subardegree | M2sbd | 3\10 | 360.0 | 4\12 | 400.0 | 5\18 | 333.3 | 11/9, 16/13, 5/4 |
Diminished 3-subardegree | d3sbd | 3\10 | 360.0 | 3\12 | 300.0 | 6\18 | 400.0 | 11/9, 16/13, 5/4 |
Perfect 3-subardegree | P3sbd | 4\10 | 480.0 | 5\12 | 500.0 | 7\18 | 466.7 | 4/3 |
Perfect 4-subardegree | P4sbd | 5\10 | 600.0 | 6\12 | 600.0 | 9\18 | 600.0 | 7/5, 10/7 |
Perfect 5-subardegree | P5sbd | 6\10 | 720.0 | 7\12 | 700.0 | 11\18 | 733.3 | 3/2 |
Augmented 5-subardegree | A5sbd | 7\10 | 840.0 | 9\12 | 900.0 | 12\18 | 800.0 | 8/5, 13/8, 18/11 |
Minor 6-subardegree | m6sbd | 7\10 | 840.0 | 8\12 | 800.0 | 13\18 | 866.7 | 8/5, 13/8, 18/11 |
Major 6-subardegree | M6sbd | 8\10 | 960.0 | 10\12 | 1000.0 | 14\18 | 933.3 | 12/7, 7/4 |
Diminished 7-subardegree | d7sbd | 8\10 | 960.0 | 9\12 | 900.0 | 15\18 | 1000.0 | 12/7, 7/4 |
Perfect 7-subardegree | P7sbd | 9\10 | 1080.0 | 11\12 | 1100.0 | 16\18 | 1066.7 | 13/7, 15/8 |
Perfect 8-subardegree | P8sbd | 10\10 | 1200.0 | 12\12 | 1200.0 | 18\18 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 14edo |
Soft (3:2) 19edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-checkdegree | P0chkd | 0\11 | 0.0 | 0\14 | 0.0 | 0\19 | 0.0 | 1/1 |
Minor 1-checkdegree | m1chkd | 1\11 | 109.1 | 1\14 | 85.7 | 2\19 | 126.3 | 16/15, 14/13 |
Major 1-checkdegree | M1chkd | 2\11 | 218.2 | 3\14 | 257.1 | 3\19 | 189.5 | 9/8, 8/7 |
Minor 2-checkdegree | m2chkd | 2\11 | 218.2 | 2\14 | 171.4 | 4\19 | 252.6 | 9/8, 8/7 |
Major 2-checkdegree | M2chkd | 3\11 | 327.3 | 4\14 | 342.9 | 5\19 | 315.8 | 6/5, 11/9 |
Perfect 3-checkdegree | P3chkd | 4\11 | 436.4 | 5\14 | 428.6 | 7\19 | 442.1 | 14/11, 9/7 |
Augmented 3-checkdegree | A3chkd | 5\11 | 545.5 | 7\14 | 600.0 | 8\19 | 505.3 | 11/8, 18/13 |
Minor 4-checkdegree | m4chkd | 5\11 | 545.5 | 6\14 | 514.3 | 9\19 | 568.4 | 11/8, 18/13 |
Major 4-checkdegree | M4chkd | 6\11 | 654.5 | 8\14 | 685.7 | 10\19 | 631.6 | 13/9, 16/11 |
Diminished 5-checkdegree | d5chkd | 6\11 | 654.5 | 7\14 | 600.0 | 11\19 | 694.7 | 13/9, 16/11 |
Perfect 5-checkdegree | P5chkd | 7\11 | 763.6 | 9\14 | 771.4 | 12\19 | 757.9 | 14/9, 11/7 |
Minor 6-checkdegree | m6chkd | 8\11 | 872.7 | 10\14 | 857.1 | 14\19 | 884.2 | 18/11, 5/3 |
Major 6-checkdegree | M6chkd | 9\11 | 981.8 | 12\14 | 1028.6 | 15\19 | 947.4 | 7/4, 16/9 |
Minor 7-checkdegree | m7chkd | 9\11 | 981.8 | 11\14 | 942.9 | 16\19 | 1010.5 | 7/4, 16/9 |
Major 7-checkdegree | M7chkd | 10\11 | 1090.9 | 13\14 | 1114.3 | 17\19 | 1073.7 | 13/7, 15/8 |
Perfect 8-checkdegree | P8chkd | 11\11 | 1200.0 | 14\14 | 1200.0 | 19\19 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 12edo |
Hard (3:1) 16edo |
Soft (3:2) 20edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-tetrawddegree | P0ttwd | 0\12 | 0.0 | 0\16 | 0.0 | 0\20 | 0.0 | 1/1 |
Minor 1-tetrawddegree | m1ttwd | 1\12 | 100.0 | 1\16 | 75.0 | 2\20 | 120.0 | 16/15, 14/13 |
Major 1-tetrawddegree | M1ttwd | 2\12 | 200.0 | 3\16 | 225.0 | 3\20 | 180.0 | 10/9, 9/8 |
Perfect 2-tetrawddegree | P2ttwd | 3\12 | 300.0 | 4\16 | 300.0 | 5\20 | 300.0 | 6/5 |
Minor 3-tetrawddegree | m3ttwd | 4\12 | 400.0 | 5\16 | 375.0 | 7\20 | 420.0 | 5/4, 14/11 |
Major 3-tetrawddegree | M3ttwd | 5\12 | 500.0 | 7\16 | 525.0 | 8\20 | 480.0 | 4/3 |
Perfect 4-tetrawddegree | P4ttwd | 6\12 | 600.0 | 8\16 | 600.0 | 10\20 | 600.0 | 7/5, 10/7 |
Minor 5-tetrawddegree | m5ttwd | 7\12 | 700.0 | 9\16 | 675.0 | 12\20 | 720.0 | 3/2 |
Major 5-tetrawddegree | M5ttwd | 8\12 | 800.0 | 11\16 | 825.0 | 13\20 | 780.0 | 11/7, 8/5 |
Perfect 6-tetrawddegree | P6ttwd | 9\12 | 900.0 | 12\16 | 900.0 | 15\20 | 900.0 | 5/3 |
Minor 7-tetrawddegree | m7ttwd | 10\12 | 1000.0 | 13\16 | 975.0 | 17\20 | 1020.0 | 16/9, 9/5 |
Major 7-tetrawddegree | M7ttwd | 11\12 | 1100.0 | 15\16 | 1125.0 | 18\20 | 1080.0 | 13/7, 15/8 |
Perfect 8-tetrawddegree | P8ttwd | 12\12 | 1200.0 | 16\16 | 1200.0 | 20\20 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 18edo |
Soft (3:2) 21edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-oneirodegree | P0oneid | 0\13 | 0.0 | 0\18 | 0.0 | 0\21 | 0.0 | 1/1 |
Minor 1-oneirodegree | m1oneid | 1\13 | 92.3 | 1\18 | 66.7 | 2\21 | 114.3 | 16/15 |
Major 1-oneirodegree | M1oneid | 2\13 | 184.6 | 3\18 | 200.0 | 3\21 | 171.4 | 11/10, 10/9, 9/8 |
Minor 2-oneirodegree | m2oneid | 3\13 | 276.9 | 4\18 | 266.7 | 5\21 | 285.7 | 7/6 |
Major 2-oneirodegree | M2oneid | 4\13 | 369.2 | 6\18 | 400.0 | 6\21 | 342.9 | 11/9, 16/13, 5/4 |
Diminished 3-oneirodegree | d3oneid | 4\13 | 369.2 | 5\18 | 333.3 | 7\21 | 400.0 | 11/9, 16/13, 5/4 |
Perfect 3-oneirodegree | P3oneid | 5\13 | 461.5 | 7\18 | 466.7 | 8\21 | 457.1 | 9/7 |
Minor 4-oneirodegree | m4oneid | 6\13 | 553.8 | 8\18 | 533.3 | 10\21 | 571.4 | 11/8, 18/13 |
Major 4-oneirodegree | M4oneid | 7\13 | 646.2 | 10\18 | 666.7 | 11\21 | 628.6 | 13/9, 16/11 |
Perfect 5-oneirodegree | P5oneid | 8\13 | 738.5 | 11\18 | 733.3 | 13\21 | 742.9 | 14/9 |
Augmented 5-oneirodegree | A5oneid | 9\13 | 830.8 | 13\18 | 866.7 | 14\21 | 800.0 | 8/5, 13/8, 18/11 |
Minor 6-oneirodegree | m6oneid | 9\13 | 830.8 | 12\18 | 800.0 | 15\21 | 857.1 | 8/5, 13/8, 18/11 |
Major 6-oneirodegree | M6oneid | 10\13 | 923.1 | 14\18 | 933.3 | 16\21 | 914.3 | 12/7 |
Minor 7-oneirodegree | m7oneid | 11\13 | 1015.4 | 15\18 | 1000.0 | 18\21 | 1028.6 | 16/9, 9/5, 20/11 |
Major 7-oneirodegree | M7oneid | 12\13 | 1107.7 | 17\18 | 1133.3 | 19\21 | 1085.7 | 15/8 |
Perfect 8-oneirodegree | P8oneid | 13\13 | 1200.0 | 18\18 | 1200.0 | 21\21 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 14edo |
Hard (3:1) 20edo |
Soft (3:2) 22edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-ekdegree | P0ekd | 0\14 | 0.0 | 0\20 | 0.0 | 0\22 | 0.0 | 1/1 |
Diminished 1-ekdegree | d1ekd | 1\14 | 85.7 | 1\20 | 60.0 | 2\22 | 109.1 | |
Perfect 1-ekdegree | P1ekd | 2\14 | 171.4 | 3\20 | 180.0 | 3\22 | 163.6 | 12/11, 11/10, 10/9 |
Minor 2-ekdegree | m2ekd | 3\14 | 257.1 | 4\20 | 240.0 | 5\22 | 272.7 | 7/6 |
Major 2-ekdegree | M2ekd | 4\14 | 342.9 | 6\20 | 360.0 | 6\22 | 327.3 | 11/9, 16/13 |
Perfect 3-ekdegree | P3ekd | 5\14 | 428.6 | 7\20 | 420.0 | 8\22 | 436.4 | 14/11, 9/7 |
Augmented 3-ekdegree | A3ekd | 6\14 | 514.3 | 9\20 | 540.0 | 9\22 | 490.9 | 4/3 |
Perfect 4-ekdegree | P4ekd | 7\14 | 600.0 | 10\20 | 600.0 | 11\22 | 600.0 | 7/5, 10/7 |
Diminished 5-ekdegree | d5ekd | 8\14 | 685.7 | 11\20 | 660.0 | 13\22 | 709.1 | 3/2 |
Perfect 5-ekdegree | P5ekd | 9\14 | 771.4 | 13\20 | 780.0 | 14\22 | 763.6 | 14/9, 11/7 |
Minor 6-ekdegree | m6ekd | 10\14 | 857.1 | 14\20 | 840.0 | 16\22 | 872.7 | 13/8, 18/11 |
Major 6-ekdegree | M6ekd | 11\14 | 942.9 | 16\20 | 960.0 | 17\22 | 927.3 | 12/7 |
Perfect 7-ekdegree | P7ekd | 12\14 | 1028.6 | 17\20 | 1020.0 | 19\22 | 1036.4 | 9/5, 20/11, 11/6 |
Augmented 7-ekdegree | A7ekd | 13\14 | 1114.3 | 19\20 | 1140.0 | 20\22 | 1090.9 | |
Perfect 8-ekdegree | P8ekd | 14\14 | 1200.0 | 20\20 | 1200.0 | 22\22 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 15edo |
Hard (3:1) 22edo |
Soft (3:2) 23edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-pinedegree | P0pd | 0\15 | 0.0 | 0\22 | 0.0 | 0\23 | 0.0 | 1/1 |
Diminished 1-pinedegree | d1pd | 1\15 | 80.0 | 1\22 | 54.5 | 2\23 | 104.3 | |
Perfect 1-pinedegree | P1pd | 2\15 | 160.0 | 3\22 | 163.6 | 3\23 | 156.5 | 12/11, 11/10, 10/9 |
Minor 2-pinedegree | m2pd | 3\15 | 240.0 | 4\22 | 218.2 | 5\23 | 260.9 | 8/7 |
Major 2-pinedegree | M2pd | 4\15 | 320.0 | 6\22 | 327.3 | 6\23 | 313.0 | 6/5 |
Minor 3-pinedegree | m3pd | 5\15 | 400.0 | 7\22 | 381.8 | 8\23 | 417.4 | 5/4, 14/11 |
Major 3-pinedegree | M3pd | 6\15 | 480.0 | 9\22 | 490.9 | 9\23 | 469.6 | 4/3 |
Minor 4-pinedegree | m4pd | 7\15 | 560.0 | 10\22 | 545.5 | 11\23 | 573.9 | 11/8, 18/13, 7/5 |
Major 4-pinedegree | M4pd | 8\15 | 640.0 | 12\22 | 654.5 | 12\23 | 626.1 | 10/7, 13/9, 16/11 |
Minor 5-pinedegree | m5pd | 9\15 | 720.0 | 13\22 | 709.1 | 14\23 | 730.4 | 3/2 |
Major 5-pinedegree | M5pd | 10\15 | 800.0 | 15\22 | 818.2 | 15\23 | 782.6 | 11/7, 8/5 |
Minor 6-pinedegree | m6pd | 11\15 | 880.0 | 16\22 | 872.7 | 17\23 | 887.0 | 5/3 |
Major 6-pinedegree | M6pd | 12\15 | 960.0 | 18\22 | 981.8 | 18\23 | 939.1 | 7/4 |
Perfect 7-pinedegree | P7pd | 13\15 | 1040.0 | 19\22 | 1036.4 | 20\23 | 1043.5 | 9/5, 20/11, 11/6 |
Augmented 7-pinedegree | A7pd | 14\15 | 1120.0 | 21\22 | 1145.5 | 21\23 | 1095.7 | |
Perfect 8-pinedegree | P8pd | 15\15 | 1200.0 | 22\22 | 1200.0 | 23\23 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
9-note mosses
Scale degree | Abbrev. | Basic (2:1) 10edo |
Hard (3:1) 11edo |
Soft (3:2) 19edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-abludegree | P0ablud | 0\10 | 0.0 | 0\11 | 0.0 | 0\19 | 0.0 | 1/1 |
Perfect 1-abludegree | P1ablud | 1\10 | 120.0 | 1\11 | 109.1 | 2\19 | 126.3 | 16/15, 14/13 |
Augmented 1-abludegree | A1ablud | 2\10 | 240.0 | 3\11 | 327.3 | 3\19 | 189.5 | 8/7, 7/6 |
Minor 2-abludegree | m2ablud | 2\10 | 240.0 | 2\11 | 218.2 | 4\19 | 252.6 | 8/7, 7/6 |
Major 2-abludegree | M2ablud | 3\10 | 360.0 | 4\11 | 436.4 | 5\19 | 315.8 | 11/9, 16/13, 5/4 |
Minor 3-abludegree | m3ablud | 3\10 | 360.0 | 3\11 | 327.3 | 6\19 | 378.9 | 11/9, 16/13, 5/4 |
Major 3-abludegree | M3ablud | 4\10 | 480.0 | 5\11 | 545.5 | 7\19 | 442.1 | 4/3 |
Minor 4-abludegree | m4ablud | 4\10 | 480.0 | 4\11 | 436.4 | 8\19 | 505.3 | 4/3 |
Major 4-abludegree | M4ablud | 5\10 | 600.0 | 6\11 | 654.5 | 9\19 | 568.4 | 7/5, 10/7 |
Minor 5-abludegree | m5ablud | 5\10 | 600.0 | 5\11 | 545.5 | 10\19 | 631.6 | 7/5, 10/7 |
Major 5-abludegree | M5ablud | 6\10 | 720.0 | 7\11 | 763.6 | 11\19 | 694.7 | 3/2 |
Minor 6-abludegree | m6ablud | 6\10 | 720.0 | 6\11 | 654.5 | 12\19 | 757.9 | 3/2 |
Major 6-abludegree | M6ablud | 7\10 | 840.0 | 8\11 | 872.7 | 13\19 | 821.1 | 8/5, 13/8, 18/11 |
Minor 7-abludegree | m7ablud | 7\10 | 840.0 | 7\11 | 763.6 | 14\19 | 884.2 | 8/5, 13/8, 18/11 |
Major 7-abludegree | M7ablud | 8\10 | 960.0 | 9\11 | 981.8 | 15\19 | 947.4 | 12/7, 7/4 |
Diminished 8-abludegree | d8ablud | 8\10 | 960.0 | 8\11 | 872.7 | 16\19 | 1010.5 | 12/7, 7/4 |
Perfect 8-abludegree | P8ablud | 9\10 | 1080.0 | 10\11 | 1090.9 | 17\19 | 1073.7 | 13/7, 15/8 |
Perfect 9-abludegree | P9ablud | 10\10 | 1200.0 | 11\11 | 1200.0 | 19\19 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 13edo |
Soft (3:2) 20edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-baldegree | P0bzd | 0\11 | 0.0 | 0\13 | 0.0 | 0\20 | 0.0 | 1/1 |
Minor 1-baldegree | m1bzd | 1\11 | 109.1 | 1\13 | 92.3 | 2\20 | 120.0 | 16/15, 14/13 |
Major 1-baldegree | M1bzd | 2\11 | 218.2 | 3\13 | 276.9 | 3\20 | 180.0 | 9/8, 8/7 |
Minor 2-baldegree | m2bzd | 2\11 | 218.2 | 2\13 | 184.6 | 4\20 | 240.0 | 9/8, 8/7 |
Major 2-baldegree | M2bzd | 3\11 | 327.3 | 4\13 | 369.2 | 5\20 | 300.0 | 6/5, 11/9 |
Minor 3-baldegree | m3bzd | 3\11 | 327.3 | 3\13 | 276.9 | 6\20 | 360.0 | 6/5, 11/9 |
Major 3-baldegree | M3bzd | 4\11 | 436.4 | 5\13 | 461.5 | 7\20 | 420.0 | 14/11, 9/7 |
Diminished 4-baldegree | d4bzd | 4\11 | 436.4 | 4\13 | 369.2 | 8\20 | 480.0 | 14/11, 9/7 |
Perfect 4-baldegree | P4bzd | 5\11 | 545.5 | 6\13 | 553.8 | 9\20 | 540.0 | 11/8, 18/13 |
Perfect 5-baldegree | P5bzd | 6\11 | 654.5 | 7\13 | 646.2 | 11\20 | 660.0 | 13/9, 16/11 |
Augmented 5-baldegree | A5bzd | 7\11 | 763.6 | 9\13 | 830.8 | 12\20 | 720.0 | 14/9, 11/7 |
Minor 6-baldegree | m6bzd | 7\11 | 763.6 | 8\13 | 738.5 | 13\20 | 780.0 | 14/9, 11/7 |
Major 6-baldegree | M6bzd | 8\11 | 872.7 | 10\13 | 923.1 | 14\20 | 840.0 | 18/11, 5/3 |
Minor 7-baldegree | m7bzd | 8\11 | 872.7 | 9\13 | 830.8 | 15\20 | 900.0 | 18/11, 5/3 |
Major 7-baldegree | M7bzd | 9\11 | 981.8 | 11\13 | 1015.4 | 16\20 | 960.0 | 7/4, 16/9 |
Minor 8-baldegree | m8bzd | 9\11 | 981.8 | 10\13 | 923.1 | 17\20 | 1020.0 | 7/4, 16/9 |
Major 8-baldegree | M8bzd | 10\11 | 1090.9 | 12\13 | 1107.7 | 18\20 | 1080.0 | 13/7, 15/8 |
Perfect 9-baldegree | P9bzd | 11\11 | 1200.0 | 13\13 | 1200.0 | 20\20 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 12edo |
Hard (3:1) 15edo |
Soft (3:2) 21edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-cherdegree | P0chd | 0\12 | 0.0 | 0\15 | 0.0 | 0\21 | 0.0 | 1/1 |
Perfect 1-cherdegree | P1chd | 1\12 | 100.0 | 1\15 | 80.0 | 2\21 | 114.3 | 16/15, 14/13 |
Augmented 1-cherdegree | A1chd | 2\12 | 200.0 | 3\15 | 240.0 | 3\21 | 171.4 | 10/9, 9/8 |
Diminished 2-cherdegree | d2chd | 2\12 | 200.0 | 2\15 | 160.0 | 4\21 | 228.6 | 10/9, 9/8 |
Perfect 2-cherdegree | P2chd | 3\12 | 300.0 | 4\15 | 320.0 | 5\21 | 285.7 | 6/5 |
Perfect 3-cherdegree | P3chd | 4\12 | 400.0 | 5\15 | 400.0 | 7\21 | 400.0 | 5/4, 14/11 |
Perfect 4-cherdegree | P4chd | 5\12 | 500.0 | 6\15 | 480.0 | 9\21 | 514.3 | 4/3 |
Augmented 4-cherdegree | A4chd | 6\12 | 600.0 | 8\15 | 640.0 | 10\21 | 571.4 | 7/5, 10/7 |
Diminished 5-cherdegree | d5chd | 6\12 | 600.0 | 7\15 | 560.0 | 11\21 | 628.6 | 7/5, 10/7 |
Perfect 5-cherdegree | P5chd | 7\12 | 700.0 | 9\15 | 720.0 | 12\21 | 685.7 | 3/2 |
Perfect 6-cherdegree | P6chd | 8\12 | 800.0 | 10\15 | 800.0 | 14\21 | 800.0 | 11/7, 8/5 |
Perfect 7-cherdegree | P7chd | 9\12 | 900.0 | 11\15 | 880.0 | 16\21 | 914.3 | 5/3 |
Augmented 7-cherdegree | A7chd | 10\12 | 1000.0 | 13\15 | 1040.0 | 17\21 | 971.4 | 16/9, 9/5 |
Diminished 8-cherdegree | d8chd | 10\12 | 1000.0 | 12\15 | 960.0 | 18\21 | 1028.6 | 16/9, 9/5 |
Perfect 8-cherdegree | P8chd | 11\12 | 1100.0 | 14\15 | 1120.0 | 19\21 | 1085.7 | 13/7, 15/8 |
Perfect 9-cherdegree | P9chd | 12\12 | 1200.0 | 15\15 | 1200.0 | 21\21 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 17edo |
Soft (3:2) 22edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-gramdegree | P0gmd | 0\13 | 0.0 | 0\17 | 0.0 | 0\22 | 0.0 | 1/1 |
Minor 1-gramdegree | m1gmd | 1\13 | 92.3 | 1\17 | 70.6 | 2\22 | 109.1 | 16/15 |
Major 1-gramdegree | M1gmd | 2\13 | 184.6 | 3\17 | 211.8 | 3\22 | 163.6 | 11/10, 10/9, 9/8 |
Diminished 2-gramdegree | d2gmd | 2\13 | 184.6 | 2\17 | 141.2 | 4\22 | 218.2 | 11/10, 10/9, 9/8 |
Perfect 2-gramdegree | P2gmd | 3\13 | 276.9 | 4\17 | 282.4 | 5\22 | 272.7 | 7/6 |
Minor 3-gramdegree | m3gmd | 4\13 | 369.2 | 5\17 | 352.9 | 7\22 | 381.8 | 11/9, 16/13, 5/4 |
Major 3-gramdegree | M3gmd | 5\13 | 461.5 | 7\17 | 494.1 | 8\22 | 436.4 | 9/7 |
Minor 4-gramdegree | m4gmd | 5\13 | 461.5 | 6\17 | 423.5 | 9\22 | 490.9 | 9/7 |
Major 4-gramdegree | M4gmd | 6\13 | 553.8 | 8\17 | 564.7 | 10\22 | 545.5 | 11/8, 18/13 |
Minor 5-gramdegree | m5gmd | 7\13 | 646.2 | 9\17 | 635.3 | 12\22 | 654.5 | 13/9, 16/11 |
Major 5-gramdegree | M5gmd | 8\13 | 738.5 | 11\17 | 776.5 | 13\22 | 709.1 | 14/9 |
Minor 6-gramdegree | m6gmd | 8\13 | 738.5 | 10\17 | 705.9 | 14\22 | 763.6 | 14/9 |
Major 6-gramdegree | M6gmd | 9\13 | 830.8 | 12\17 | 847.1 | 15\22 | 818.2 | 8/5, 13/8, 18/11 |
Perfect 7-gramdegree | P7gmd | 10\13 | 923.1 | 13\17 | 917.6 | 17\22 | 927.3 | 12/7 |
Augmented 7-gramdegree | A7gmd | 11\13 | 1015.4 | 15\17 | 1058.8 | 18\22 | 981.8 | 16/9, 9/5, 20/11 |
Minor 8-gramdegree | m8gmd | 11\13 | 1015.4 | 14\17 | 988.2 | 19\22 | 1036.4 | 16/9, 9/5, 20/11 |
Major 8-gramdegree | M8gmd | 12\13 | 1107.7 | 16\17 | 1129.4 | 20\22 | 1090.9 | 15/8 |
Perfect 9-gramdegree | P9gmd | 13\13 | 1200.0 | 17\17 | 1200.0 | 22\22 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 14edo |
Hard (3:1) 19edo |
Soft (3:2) 23edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-cthondegree | P0ctd | 0\14 | 0.0 | 0\19 | 0.0 | 0\23 | 0.0 | 1/1 |
Minor 1-cthondegree | m1ctd | 1\14 | 85.7 | 1\19 | 63.2 | 2\23 | 104.3 | |
Major 1-cthondegree | M1ctd | 2\14 | 171.4 | 3\19 | 189.5 | 3\23 | 156.5 | 12/11, 11/10, 10/9 |
Perfect 2-cthondegree | P2ctd | 3\14 | 257.1 | 4\19 | 252.6 | 5\23 | 260.9 | 7/6 |
Augmented 2-cthondegree | A2ctd | 4\14 | 342.9 | 6\19 | 378.9 | 6\23 | 313.0 | 11/9, 16/13 |
Minor 3-cthondegree | m3ctd | 4\14 | 342.9 | 5\19 | 315.8 | 7\23 | 365.2 | 11/9, 16/13 |
Major 3-cthondegree | M3ctd | 5\14 | 428.6 | 7\19 | 442.1 | 8\23 | 417.4 | 14/11, 9/7 |
Minor 4-cthondegree | m4ctd | 6\14 | 514.3 | 8\19 | 505.3 | 10\23 | 521.7 | 4/3 |
Major 4-cthondegree | M4ctd | 7\14 | 600.0 | 10\19 | 631.6 | 11\23 | 573.9 | 7/5, 10/7 |
Minor 5-cthondegree | m5ctd | 7\14 | 600.0 | 9\19 | 568.4 | 12\23 | 626.1 | 7/5, 10/7 |
Major 5-cthondegree | M5ctd | 8\14 | 685.7 | 11\19 | 694.7 | 13\23 | 678.3 | 3/2 |
Minor 6-cthondegree | m6ctd | 9\14 | 771.4 | 12\19 | 757.9 | 15\23 | 782.6 | 14/9, 11/7 |
Major 6-cthondegree | M6ctd | 10\14 | 857.1 | 14\19 | 884.2 | 16\23 | 834.8 | 13/8, 18/11 |
Diminished 7-cthondegree | d7ctd | 10\14 | 857.1 | 13\19 | 821.1 | 17\23 | 887.0 | 13/8, 18/11 |
Perfect 7-cthondegree | P7ctd | 11\14 | 942.9 | 15\19 | 947.4 | 18\23 | 939.1 | 12/7 |
Minor 8-cthondegree | m8ctd | 12\14 | 1028.6 | 16\19 | 1010.5 | 20\23 | 1043.5 | 9/5, 20/11, 11/6 |
Major 8-cthondegree | M8ctd | 13\14 | 1114.3 | 18\19 | 1136.8 | 21\23 | 1095.7 | |
Perfect 9-cthondegree | P9ctd | 14\14 | 1200.0 | 19\19 | 1200.0 | 23\23 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 15edo |
Hard (3:1) 21edo |
Soft (3:2) 24edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-hyrudegree | P0hyd | 0\15 | 0.0 | 0\21 | 0.0 | 0\24 | 0.0 | 1/1 |
Diminished 1-hyrudegree | d1hyd | 1\15 | 80.0 | 1\21 | 57.1 | 2\24 | 100.0 | |
Perfect 1-hyrudegree | P1hyd | 2\15 | 160.0 | 3\21 | 171.4 | 3\24 | 150.0 | 12/11, 11/10, 10/9 |
Perfect 2-hyrudegree | P2hyd | 3\15 | 240.0 | 4\21 | 228.6 | 5\24 | 250.0 | 8/7 |
Augmented 2-hyrudegree | A2hyd | 4\15 | 320.0 | 6\21 | 342.9 | 6\24 | 300.0 | 6/5 |
Perfect 3-hyrudegree | P3hyd | 5\15 | 400.0 | 7\21 | 400.0 | 8\24 | 400.0 | 5/4, 14/11 |
Diminished 4-hyrudegree | d4hyd | 6\15 | 480.0 | 8\21 | 457.1 | 10\24 | 500.0 | 4/3 |
Perfect 4-hyrudegree | P4hyd | 7\15 | 560.0 | 10\21 | 571.4 | 11\24 | 550.0 | 11/8, 18/13, 7/5 |
Perfect 5-hyrudegree | P5hyd | 8\15 | 640.0 | 11\21 | 628.6 | 13\24 | 650.0 | 10/7, 13/9, 16/11 |
Augmented 5-hyrudegree | A5hyd | 9\15 | 720.0 | 13\21 | 742.9 | 14\24 | 700.0 | 3/2 |
Perfect 6-hyrudegree | P6hyd | 10\15 | 800.0 | 14\21 | 800.0 | 16\24 | 800.0 | 11/7, 8/5 |
Diminished 7-hyrudegree | d7hyd | 11\15 | 880.0 | 15\21 | 857.1 | 18\24 | 900.0 | 5/3 |
Perfect 7-hyrudegree | P7hyd | 12\15 | 960.0 | 17\21 | 971.4 | 19\24 | 950.0 | 7/4 |
Perfect 8-hyrudegree | P8hyd | 13\15 | 1040.0 | 18\21 | 1028.6 | 21\24 | 1050.0 | 9/5, 20/11, 11/6 |
Augmented 8-hyrudegree | A8hyd | 14\15 | 1120.0 | 20\21 | 1142.9 | 22\24 | 1100.0 | |
Perfect 9-hyrudegree | P9hyd | 15\15 | 1200.0 | 21\21 | 1200.0 | 24\24 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 16edo |
Hard (3:1) 23edo |
Soft (3:2) 25edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-armdegree | P0armd | 0\16 | 0.0 | 0\23 | 0.0 | 0\25 | 0.0 | 1/1 |
Minor 1-armdegree | m1armd | 1\16 | 75.0 | 1\23 | 52.2 | 2\25 | 96.0 | |
Major 1-armdegree | M1armd | 2\16 | 150.0 | 3\23 | 156.5 | 3\25 | 144.0 | 14/13, 12/11, 11/10 |
Minor 2-armdegree | m2armd | 3\16 | 225.0 | 4\23 | 208.7 | 5\25 | 240.0 | 9/8, 8/7 |
Major 2-armdegree | M2armd | 4\16 | 300.0 | 6\23 | 313.0 | 6\25 | 288.0 | 6/5 |
Minor 3-armdegree | m3armd | 5\16 | 375.0 | 7\23 | 365.2 | 8\25 | 384.0 | 16/13, 5/4 |
Major 3-armdegree | M3armd | 6\16 | 450.0 | 9\23 | 469.6 | 9\25 | 432.0 | 9/7 |
Perfect 4-armdegree | P4armd | 7\16 | 525.0 | 10\23 | 521.7 | 11\25 | 528.0 | |
Augmented 4-armdegree | A4armd | 8\16 | 600.0 | 12\23 | 626.1 | 12\25 | 576.0 | 7/5, 10/7 |
Diminished 5-armdegree | d5armd | 8\16 | 600.0 | 11\23 | 573.9 | 13\25 | 624.0 | 7/5, 10/7 |
Perfect 5-armdegree | P5armd | 9\16 | 675.0 | 13\23 | 678.3 | 14\25 | 672.0 | |
Minor 6-armdegree | m6armd | 10\16 | 750.0 | 14\23 | 730.4 | 16\25 | 768.0 | 14/9 |
Major 6-armdegree | M6armd | 11\16 | 825.0 | 16\23 | 834.8 | 17\25 | 816.0 | 8/5, 13/8 |
Minor 7-armdegree | m7armd | 12\16 | 900.0 | 17\23 | 887.0 | 19\25 | 912.0 | 5/3 |
Major 7-armdegree | M7armd | 13\16 | 975.0 | 19\23 | 991.3 | 20\25 | 960.0 | 7/4, 16/9 |
Minor 8-armdegree | m8armd | 14\16 | 1050.0 | 20\23 | 1043.5 | 22\25 | 1056.0 | 20/11, 11/6, 13/7 |
Major 8-armdegree | M8armd | 15\16 | 1125.0 | 22\23 | 1147.8 | 23\25 | 1104.0 | |
Perfect 9-armdegree | P9armd | 16\16 | 1200.0 | 23\23 | 1200.0 | 25\25 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 17edo |
Hard (3:1) 25edo |
Soft (3:2) 26edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-bludegree | P0blud | 0\17 | 0.0 | 0\25 | 0.0 | 0\26 | 0.0 | 1/1 |
Diminished 1-bludegree | d1blud | 1\17 | 70.6 | 1\25 | 48.0 | 2\26 | 92.3 | |
Perfect 1-bludegree | P1blud | 2\17 | 141.2 | 3\25 | 144.0 | 3\26 | 138.5 | 14/13, 12/11 |
Minor 2-bludegree | m2blud | 3\17 | 211.8 | 4\25 | 192.0 | 5\26 | 230.8 | 9/8, 8/7 |
Major 2-bludegree | M2blud | 4\17 | 282.4 | 6\25 | 288.0 | 6\26 | 276.9 | 7/6 |
Minor 3-bludegree | m3blud | 5\17 | 352.9 | 7\25 | 336.0 | 8\26 | 369.2 | 11/9, 16/13 |
Major 3-bludegree | M3blud | 6\17 | 423.5 | 9\25 | 432.0 | 9\26 | 415.4 | 14/11, 9/7 |
Minor 4-bludegree | m4blud | 7\17 | 494.1 | 10\25 | 480.0 | 11\26 | 507.7 | 4/3 |
Major 4-bludegree | M4blud | 8\17 | 564.7 | 12\25 | 576.0 | 12\26 | 553.8 | 11/8, 18/13, 7/5 |
Minor 5-bludegree | m5blud | 9\17 | 635.3 | 13\25 | 624.0 | 14\26 | 646.2 | 10/7, 13/9, 16/11 |
Major 5-bludegree | M5blud | 10\17 | 705.9 | 15\25 | 720.0 | 15\26 | 692.3 | 3/2 |
Minor 6-bludegree | m6blud | 11\17 | 776.5 | 16\25 | 768.0 | 17\26 | 784.6 | 14/9, 11/7 |
Major 6-bludegree | M6blud | 12\17 | 847.1 | 18\25 | 864.0 | 18\26 | 830.8 | 13/8, 18/11 |
Minor 7-bludegree | m7blud | 13\17 | 917.6 | 19\25 | 912.0 | 20\26 | 923.1 | 12/7 |
Major 7-bludegree | M7blud | 14\17 | 988.2 | 21\25 | 1008.0 | 21\26 | 969.2 | 7/4, 16/9 |
Perfect 8-bludegree | P8blud | 15\17 | 1058.8 | 22\25 | 1056.0 | 23\26 | 1061.5 | 11/6, 13/7 |
Augmented 8-bludegree | A8blud | 16\17 | 1129.4 | 24\25 | 1152.0 | 24\26 | 1107.7 | |
Perfect 9-bludegree | P9blud | 17\17 | 1200.0 | 25\25 | 1200.0 | 26\26 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
10-note mosses
Scale degree | Abbrev. | Basic (2:1) 11edo |
Hard (3:1) 12edo |
Soft (3:2) 21edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-asinadegree | P0asid | 0\11 | 0.0 | 0\12 | 0.0 | 0\21 | 0.0 | 1/1 |
Perfect 1-asinadegree | P1asid | 1\11 | 109.1 | 1\12 | 100.0 | 2\21 | 114.3 | 16/15, 14/13 |
Augmented 1-asinadegree | A1asid | 2\11 | 218.2 | 3\12 | 300.0 | 3\21 | 171.4 | 9/8, 8/7 |
Minor 2-asinadegree | m2asid | 2\11 | 218.2 | 2\12 | 200.0 | 4\21 | 228.6 | 9/8, 8/7 |
Major 2-asinadegree | M2asid | 3\11 | 327.3 | 4\12 | 400.0 | 5\21 | 285.7 | 6/5, 11/9 |
Minor 3-asinadegree | m3asid | 3\11 | 327.3 | 3\12 | 300.0 | 6\21 | 342.9 | 6/5, 11/9 |
Major 3-asinadegree | M3asid | 4\11 | 436.4 | 5\12 | 500.0 | 7\21 | 400.0 | 14/11, 9/7 |
Minor 4-asinadegree | m4asid | 4\11 | 436.4 | 4\12 | 400.0 | 8\21 | 457.1 | 14/11, 9/7 |
Major 4-asinadegree | M4asid | 5\11 | 545.5 | 6\12 | 600.0 | 9\21 | 514.3 | 11/8, 18/13 |
Minor 5-asinadegree | m5asid | 5\11 | 545.5 | 5\12 | 500.0 | 10\21 | 571.4 | 11/8, 18/13 |
Major 5-asinadegree | M5asid | 6\11 | 654.5 | 7\12 | 700.0 | 11\21 | 628.6 | 13/9, 16/11 |
Minor 6-asinadegree | m6asid | 6\11 | 654.5 | 6\12 | 600.0 | 12\21 | 685.7 | 13/9, 16/11 |
Major 6-asinadegree | M6asid | 7\11 | 763.6 | 8\12 | 800.0 | 13\21 | 742.9 | 14/9, 11/7 |
Minor 7-asinadegree | m7asid | 7\11 | 763.6 | 7\12 | 700.0 | 14\21 | 800.0 | 14/9, 11/7 |
Major 7-asinadegree | M7asid | 8\11 | 872.7 | 9\12 | 900.0 | 15\21 | 857.1 | 18/11, 5/3 |
Minor 8-asinadegree | m8asid | 8\11 | 872.7 | 8\12 | 800.0 | 16\21 | 914.3 | 18/11, 5/3 |
Major 8-asinadegree | M8asid | 9\11 | 981.8 | 10\12 | 1000.0 | 17\21 | 971.4 | 7/4, 16/9 |
Diminished 9-asinadegree | d9asid | 9\11 | 981.8 | 9\12 | 900.0 | 18\21 | 1028.6 | 7/4, 16/9 |
Perfect 9-asinadegree | P9asid | 10\11 | 1090.9 | 11\12 | 1100.0 | 19\21 | 1085.7 | 13/7, 15/8 |
Perfect 10-asinadegree | P10asid | 11\11 | 1200.0 | 12\12 | 1200.0 | 21\21 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 12edo |
Hard (3:1) 14edo |
Soft (3:2) 22edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-jaradegree | P0jad | 0\12 | 0.0 | 0\14 | 0.0 | 0\22 | 0.0 | 1/1 |
Perfect 1-jaradegree | P1jad | 1\12 | 100.0 | 1\14 | 85.7 | 2\22 | 109.1 | 16/15, 14/13 |
Augmented 1-jaradegree | A1jad | 2\12 | 200.0 | 3\14 | 257.1 | 3\22 | 163.6 | 10/9, 9/8 |
Minor 2-jaradegree | m2jad | 2\12 | 200.0 | 2\14 | 171.4 | 4\22 | 218.2 | 10/9, 9/8 |
Major 2-jaradegree | M2jad | 3\12 | 300.0 | 4\14 | 342.9 | 5\22 | 272.7 | 6/5 |
Minor 3-jaradegree | m3jad | 3\12 | 300.0 | 3\14 | 257.1 | 6\22 | 327.3 | 6/5 |
Major 3-jaradegree | M3jad | 4\12 | 400.0 | 5\14 | 428.6 | 7\22 | 381.8 | 5/4, 14/11 |
Diminished 4-jaradegree | d4jad | 4\12 | 400.0 | 4\14 | 342.9 | 8\22 | 436.4 | 5/4, 14/11 |
Perfect 4-jaradegree | P4jad | 5\12 | 500.0 | 6\14 | 514.3 | 9\22 | 490.9 | 4/3 |
Perfect 5-jaradegree | P5jad | 6\12 | 600.0 | 7\14 | 600.0 | 11\22 | 600.0 | 7/5, 10/7 |
Perfect 6-jaradegree | P6jad | 7\12 | 700.0 | 8\14 | 685.7 | 13\22 | 709.1 | 3/2 |
Augmented 6-jaradegree | A6jad | 8\12 | 800.0 | 10\14 | 857.1 | 14\22 | 763.6 | 11/7, 8/5 |
Minor 7-jaradegree | m7jad | 8\12 | 800.0 | 9\14 | 771.4 | 15\22 | 818.2 | 11/7, 8/5 |
Major 7-jaradegree | M7jad | 9\12 | 900.0 | 11\14 | 942.9 | 16\22 | 872.7 | 5/3 |
Minor 8-jaradegree | m8jad | 9\12 | 900.0 | 10\14 | 857.1 | 17\22 | 927.3 | 5/3 |
Major 8-jaradegree | M8jad | 10\12 | 1000.0 | 12\14 | 1028.6 | 18\22 | 981.8 | 16/9, 9/5 |
Diminished 9-jaradegree | d9jad | 10\12 | 1000.0 | 11\14 | 942.9 | 19\22 | 1036.4 | 16/9, 9/5 |
Perfect 9-jaradegree | P9jad | 11\12 | 1100.0 | 13\14 | 1114.3 | 20\22 | 1090.9 | 13/7, 15/8 |
Perfect 10-jaradegree | P10jad | 12\12 | 1200.0 | 14\14 | 1200.0 | 22\22 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 13edo |
Hard (3:1) 16edo |
Soft (3:2) 23edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-sephdegree | P0spd | 0\13 | 0.0 | 0\16 | 0.0 | 0\23 | 0.0 | 1/1 |
Minor 1-sephdegree | m1spd | 1\13 | 92.3 | 1\16 | 75.0 | 2\23 | 104.3 | 16/15 |
Major 1-sephdegree | M1spd | 2\13 | 184.6 | 3\16 | 225.0 | 3\23 | 156.5 | 11/10, 10/9, 9/8 |
Minor 2-sephdegree | m2spd | 2\13 | 184.6 | 2\16 | 150.0 | 4\23 | 208.7 | 11/10, 10/9, 9/8 |
Major 2-sephdegree | M2spd | 3\13 | 276.9 | 4\16 | 300.0 | 5\23 | 260.9 | 7/6 |
Diminished 3-sephdegree | d3spd | 3\13 | 276.9 | 3\16 | 225.0 | 6\23 | 313.0 | 7/6 |
Perfect 3-sephdegree | P3spd | 4\13 | 369.2 | 5\16 | 375.0 | 7\23 | 365.2 | 11/9, 16/13, 5/4 |
Minor 4-sephdegree | m4spd | 5\13 | 461.5 | 6\16 | 450.0 | 9\23 | 469.6 | 9/7 |
Major 4-sephdegree | M4spd | 6\13 | 553.8 | 8\16 | 600.0 | 10\23 | 521.7 | 11/8, 18/13 |
Minor 5-sephdegree | m5spd | 6\13 | 553.8 | 7\16 | 525.0 | 11\23 | 573.9 | 11/8, 18/13 |
Major 5-sephdegree | M5spd | 7\13 | 646.2 | 9\16 | 675.0 | 12\23 | 626.1 | 13/9, 16/11 |
Minor 6-sephdegree | m6spd | 7\13 | 646.2 | 8\16 | 600.0 | 13\23 | 678.3 | 13/9, 16/11 |
Major 6-sephdegree | M6spd | 8\13 | 738.5 | 10\16 | 750.0 | 14\23 | 730.4 | 14/9 |
Perfect 7-sephdegree | P7spd | 9\13 | 830.8 | 11\16 | 825.0 | 16\23 | 834.8 | 8/5, 13/8, 18/11 |
Augmented 7-sephdegree | A7spd | 10\13 | 923.1 | 13\16 | 975.0 | 17\23 | 887.0 | 12/7 |
Minor 8-sephdegree | m8spd | 10\13 | 923.1 | 12\16 | 900.0 | 18\23 | 939.1 | 12/7 |
Major 8-sephdegree | M8spd | 11\13 | 1015.4 | 14\16 | 1050.0 | 19\23 | 991.3 | 16/9, 9/5, 20/11 |
Minor 9-sephdegree | m9spd | 11\13 | 1015.4 | 13\16 | 975.0 | 20\23 | 1043.5 | 16/9, 9/5, 20/11 |
Major 9-sephdegree | M9spd | 12\13 | 1107.7 | 15\16 | 1125.0 | 21\23 | 1095.7 | 15/8 |
Perfect 10-sephdegree | P10spd | 13\13 | 1200.0 | 16\16 | 1200.0 | 23\23 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 14edo |
Hard (3:1) 18edo |
Soft (3:2) 24edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-limedegree | P0lmd | 0\14 | 0.0 | 0\18 | 0.0 | 0\24 | 0.0 | 1/1 |
Minor 1-limedegree | m1lmd | 1\14 | 85.7 | 1\18 | 66.7 | 2\24 | 100.0 | |
Major 1-limedegree | M1lmd | 2\14 | 171.4 | 3\18 | 200.0 | 3\24 | 150.0 | 12/11, 11/10, 10/9 |
Diminished 2-limedegree | d2lmd | 2\14 | 171.4 | 2\18 | 133.3 | 4\24 | 200.0 | 12/11, 11/10, 10/9 |
Perfect 2-limedegree | P2lmd | 3\14 | 257.1 | 4\18 | 266.7 | 5\24 | 250.0 | 7/6 |
Perfect 3-limedegree | P3lmd | 4\14 | 342.9 | 5\18 | 333.3 | 7\24 | 350.0 | 11/9, 16/13 |
Augmented 3-limedegree | A3lmd | 5\14 | 428.6 | 7\18 | 466.7 | 8\24 | 400.0 | 14/11, 9/7 |
Minor 4-limedegree | m4lmd | 5\14 | 428.6 | 6\18 | 400.0 | 9\24 | 450.0 | 14/11, 9/7 |
Major 4-limedegree | M4lmd | 6\14 | 514.3 | 8\18 | 533.3 | 10\24 | 500.0 | 4/3 |
Perfect 5-limedegree | P5lmd | 7\14 | 600.0 | 9\18 | 600.0 | 12\24 | 600.0 | 7/5, 10/7 |
Minor 6-limedegree | m6lmd | 8\14 | 685.7 | 10\18 | 666.7 | 14\24 | 700.0 | 3/2 |
Major 6-limedegree | M6lmd | 9\14 | 771.4 | 12\18 | 800.0 | 15\24 | 750.0 | 14/9, 11/7 |
Diminished 7-limedegree | d7lmd | 9\14 | 771.4 | 11\18 | 733.3 | 16\24 | 800.0 | 14/9, 11/7 |
Perfect 7-limedegree | P7lmd | 10\14 | 857.1 | 13\18 | 866.7 | 17\24 | 850.0 | 13/8, 18/11 |
Perfect 8-limedegree | P8lmd | 11\14 | 942.9 | 14\18 | 933.3 | 19\24 | 950.0 | 12/7 |
Augmented 8-limedegree | A8lmd | 12\14 | 1028.6 | 16\18 | 1066.7 | 20\24 | 1000.0 | 9/5, 20/11, 11/6 |
Minor 9-limedegree | m9lmd | 12\14 | 1028.6 | 15\18 | 1000.0 | 21\24 | 1050.0 | 9/5, 20/11, 11/6 |
Major 9-limedegree | M9lmd | 13\14 | 1114.3 | 17\18 | 1133.3 | 22\24 | 1100.0 | |
Perfect 10-limedegree | P10lmd | 14\14 | 1200.0 | 18\18 | 1200.0 | 24\24 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 15edo |
Hard (3:1) 20edo |
Soft (3:2) 25edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-pentawddegree | P0pwd | 0\15 | 0.0 | 0\20 | 0.0 | 0\25 | 0.0 | 1/1 |
Minor 1-pentawddegree | m1pwd | 1\15 | 80.0 | 1\20 | 60.0 | 2\25 | 96.0 | |
Major 1-pentawddegree | M1pwd | 2\15 | 160.0 | 3\20 | 180.0 | 3\25 | 144.0 | 12/11, 11/10, 10/9 |
Perfect 2-pentawddegree | P2pwd | 3\15 | 240.0 | 4\20 | 240.0 | 5\25 | 240.0 | 8/7 |
Minor 3-pentawddegree | m3pwd | 4\15 | 320.0 | 5\20 | 300.0 | 7\25 | 336.0 | 6/5 |
Major 3-pentawddegree | M3pwd | 5\15 | 400.0 | 7\20 | 420.0 | 8\25 | 384.0 | 5/4, 14/11 |
Perfect 4-pentawddegree | P4pwd | 6\15 | 480.0 | 8\20 | 480.0 | 10\25 | 480.0 | 4/3 |
Minor 5-pentawddegree | m5pwd | 7\15 | 560.0 | 9\20 | 540.0 | 12\25 | 576.0 | 11/8, 18/13, 7/5 |
Major 5-pentawddegree | M5pwd | 8\15 | 640.0 | 11\20 | 660.0 | 13\25 | 624.0 | 10/7, 13/9, 16/11 |
Perfect 6-pentawddegree | P6pwd | 9\15 | 720.0 | 12\20 | 720.0 | 15\25 | 720.0 | 3/2 |
Minor 7-pentawddegree | m7pwd | 10\15 | 800.0 | 13\20 | 780.0 | 17\25 | 816.0 | 11/7, 8/5 |
Major 7-pentawddegree | M7pwd | 11\15 | 880.0 | 15\20 | 900.0 | 18\25 | 864.0 | 5/3 |
Perfect 8-pentawddegree | P8pwd | 12\15 | 960.0 | 16\20 | 960.0 | 20\25 | 960.0 | 7/4 |
Minor 9-pentawddegree | m9pwd | 13\15 | 1040.0 | 17\20 | 1020.0 | 22\25 | 1056.0 | 9/5, 20/11, 11/6 |
Major 9-pentawddegree | M9pwd | 14\15 | 1120.0 | 19\20 | 1140.0 | 23\25 | 1104.0 | |
Perfect 10-pentawddegree | P10pwd | 15\15 | 1200.0 | 20\20 | 1200.0 | 25\25 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 16edo |
Hard (3:1) 22edo |
Soft (3:2) 26edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-lemdegree | P0led | 0\16 | 0.0 | 0\22 | 0.0 | 0\26 | 0.0 | 1/1 |
Minor 1-lemdegree | m1led | 1\16 | 75.0 | 1\22 | 54.5 | 2\26 | 92.3 | |
Major 1-lemdegree | M1led | 2\16 | 150.0 | 3\22 | 163.6 | 3\26 | 138.5 | 14/13, 12/11, 11/10 |
Perfect 2-lemdegree | P2led | 3\16 | 225.0 | 4\22 | 218.2 | 5\26 | 230.8 | 9/8, 8/7 |
Augmented 2-lemdegree | A2led | 4\16 | 300.0 | 6\22 | 327.3 | 6\26 | 276.9 | 6/5 |
Diminished 3-lemdegree | d3led | 4\16 | 300.0 | 5\22 | 272.7 | 7\26 | 323.1 | 6/5 |
Perfect 3-lemdegree | P3led | 5\16 | 375.0 | 7\22 | 381.8 | 8\26 | 369.2 | 16/13, 5/4 |
Minor 4-lemdegree | m4led | 6\16 | 450.0 | 8\22 | 436.4 | 10\26 | 461.5 | 9/7 |
Major 4-lemdegree | M4led | 7\16 | 525.0 | 10\22 | 545.5 | 11\26 | 507.7 | |
Perfect 5-lemdegree | P5led | 8\16 | 600.0 | 11\22 | 600.0 | 13\26 | 600.0 | 7/5, 10/7 |
Minor 6-lemdegree | m6led | 9\16 | 675.0 | 12\22 | 654.5 | 15\26 | 692.3 | |
Major 6-lemdegree | M6led | 10\16 | 750.0 | 14\22 | 763.6 | 16\26 | 738.5 | 14/9 |
Perfect 7-lemdegree | P7led | 11\16 | 825.0 | 15\22 | 818.2 | 18\26 | 830.8 | 8/5, 13/8 |
Augmented 7-lemdegree | A7led | 12\16 | 900.0 | 17\22 | 927.3 | 19\26 | 876.9 | 5/3 |
Diminished 8-lemdegree | d8led | 12\16 | 900.0 | 16\22 | 872.7 | 20\26 | 923.1 | 5/3 |
Perfect 8-lemdegree | P8led | 13\16 | 975.0 | 18\22 | 981.8 | 21\26 | 969.2 | 7/4, 16/9 |
Minor 9-lemdegree | m9led | 14\16 | 1050.0 | 19\22 | 1036.4 | 23\26 | 1061.5 | 20/11, 11/6, 13/7 |
Major 9-lemdegree | M9led | 15\16 | 1125.0 | 21\22 | 1145.5 | 24\26 | 1107.7 | |
Perfect 10-lemdegree | P10led | 16\16 | 1200.0 | 22\22 | 1200.0 | 26\26 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 17edo |
Hard (3:1) 24edo |
Soft (3:2) 27edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-dicodegree | P0did | 0\17 | 0.0 | 0\24 | 0.0 | 0\27 | 0.0 | 1/1 |
Minor 1-dicodegree | m1did | 1\17 | 70.6 | 1\24 | 50.0 | 2\27 | 88.9 | |
Major 1-dicodegree | M1did | 2\17 | 141.2 | 3\24 | 150.0 | 3\27 | 133.3 | 14/13, 12/11 |
Minor 2-dicodegree | m2did | 3\17 | 211.8 | 4\24 | 200.0 | 5\27 | 222.2 | 9/8, 8/7 |
Major 2-dicodegree | M2did | 4\17 | 282.4 | 6\24 | 300.0 | 6\27 | 266.7 | 7/6 |
Perfect 3-dicodegree | P3did | 5\17 | 352.9 | 7\24 | 350.0 | 8\27 | 355.6 | 11/9, 16/13 |
Augmented 3-dicodegree | A3did | 6\17 | 423.5 | 9\24 | 450.0 | 9\27 | 400.0 | 14/11, 9/7 |
Minor 4-dicodegree | m4did | 6\17 | 423.5 | 8\24 | 400.0 | 10\27 | 444.4 | 14/11, 9/7 |
Major 4-dicodegree | M4did | 7\17 | 494.1 | 10\24 | 500.0 | 11\27 | 488.9 | 4/3 |
Minor 5-dicodegree | m5did | 8\17 | 564.7 | 11\24 | 550.0 | 13\27 | 577.8 | 11/8, 18/13, 7/5 |
Major 5-dicodegree | M5did | 9\17 | 635.3 | 13\24 | 650.0 | 14\27 | 622.2 | 10/7, 13/9, 16/11 |
Minor 6-dicodegree | m6did | 10\17 | 705.9 | 14\24 | 700.0 | 16\27 | 711.1 | 3/2 |
Major 6-dicodegree | M6did | 11\17 | 776.5 | 16\24 | 800.0 | 17\27 | 755.6 | 14/9, 11/7 |
Diminished 7-dicodegree | d7did | 11\17 | 776.5 | 15\24 | 750.0 | 18\27 | 800.0 | 14/9, 11/7 |
Perfect 7-dicodegree | P7did | 12\17 | 847.1 | 17\24 | 850.0 | 19\27 | 844.4 | 13/8, 18/11 |
Minor 8-dicodegree | m8did | 13\17 | 917.6 | 18\24 | 900.0 | 21\27 | 933.3 | 12/7 |
Major 8-dicodegree | M8did | 14\17 | 988.2 | 20\24 | 1000.0 | 22\27 | 977.8 | 7/4, 16/9 |
Minor 9-dicodegree | m9did | 15\17 | 1058.8 | 21\24 | 1050.0 | 24\27 | 1066.7 | 11/6, 13/7 |
Major 9-dicodegree | M9did | 16\17 | 1129.4 | 23\24 | 1150.0 | 25\27 | 1111.1 | |
Perfect 10-dicodegree | P10did | 17\17 | 1200.0 | 24\24 | 1200.0 | 27\27 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 18edo |
Hard (3:1) 26edo |
Soft (3:2) 28edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-taradegree | P0tad | 0\18 | 0.0 | 0\26 | 0.0 | 0\28 | 0.0 | 1/1 |
Diminished 1-taradegree | d1tad | 1\18 | 66.7 | 1\26 | 46.2 | 2\28 | 85.7 | |
Perfect 1-taradegree | P1tad | 2\18 | 133.3 | 3\26 | 138.5 | 3\28 | 128.6 | 14/13, 12/11 |
Minor 2-taradegree | m2tad | 3\18 | 200.0 | 4\26 | 184.6 | 5\28 | 214.3 | 10/9, 9/8 |
Major 2-taradegree | M2tad | 4\18 | 266.7 | 6\26 | 276.9 | 6\28 | 257.1 | 7/6 |
Minor 3-taradegree | m3tad | 5\18 | 333.3 | 7\26 | 323.1 | 8\28 | 342.9 | 6/5, 11/9 |
Major 3-taradegree | M3tad | 6\18 | 400.0 | 9\26 | 415.4 | 9\28 | 385.7 | 5/4, 14/11 |
Perfect 4-taradegree | P4tad | 7\18 | 466.7 | 10\26 | 461.5 | 11\28 | 471.4 | |
Augmented 4-taradegree | A4tad | 8\18 | 533.3 | 12\26 | 553.8 | 12\28 | 514.3 | 11/8 |
Perfect 5-taradegree | P5tad | 9\18 | 600.0 | 13\26 | 600.0 | 14\28 | 600.0 | 7/5, 10/7 |
Diminished 6-taradegree | d6tad | 10\18 | 666.7 | 14\26 | 646.2 | 16\28 | 685.7 | 16/11 |
Perfect 6-taradegree | P6tad | 11\18 | 733.3 | 16\26 | 738.5 | 17\28 | 728.6 | |
Minor 7-taradegree | m7tad | 12\18 | 800.0 | 17\26 | 784.6 | 19\28 | 814.3 | 11/7, 8/5 |
Major 7-taradegree | M7tad | 13\18 | 866.7 | 19\26 | 876.9 | 20\28 | 857.1 | 18/11, 5/3 |
Minor 8-taradegree | m8tad | 14\18 | 933.3 | 20\26 | 923.1 | 22\28 | 942.9 | 12/7 |
Major 8-taradegree | M8tad | 15\18 | 1000.0 | 22\26 | 1015.4 | 23\28 | 985.7 | 16/9, 9/5 |
Perfect 9-taradegree | P9tad | 16\18 | 1066.7 | 23\26 | 1061.5 | 25\28 | 1071.4 | 11/6, 13/7 |
Augmented 9-taradegree | A9tad | 17\18 | 1133.3 | 25\26 | 1153.8 | 26\28 | 1114.3 | |
Perfect 10-taradegree | P10tad | 18\18 | 1200.0 | 26\26 | 1200.0 | 28\28 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Basic (2:1) 19edo |
Hard (3:1) 28edo |
Soft (3:2) 29edo |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-sinadegree | P0sid | 0\19 | 0.0 | 0\28 | 0.0 | 0\29 | 0.0 | 1/1 |
Diminished 1-sinadegree | d1sid | 1\19 | 63.2 | 1\28 | 42.9 | 2\29 | 82.8 | |
Perfect 1-sinadegree | P1sid | 2\19 | 126.3 | 3\28 | 128.6 | 3\29 | 124.1 | 16/15, 14/13 |
Minor 2-sinadegree | m2sid | 3\19 | 189.5 | 4\28 | 171.4 | 5\29 | 206.9 | 10/9, 9/8 |
Major 2-sinadegree | M2sid | 4\19 | 252.6 | 6\28 | 257.1 | 6\29 | 248.3 | 7/6 |
Minor 3-sinadegree | m3sid | 5\19 | 315.8 | 7\28 | 300.0 | 8\29 | 331.0 | 6/5 |
Major 3-sinadegree | M3sid | 6\19 | 378.9 | 9\28 | 385.7 | 9\29 | 372.4 | 5/4 |
Minor 4-sinadegree | m4sid | 7\19 | 442.1 | 10\28 | 428.6 | 11\29 | 455.2 | 9/7 |
Major 4-sinadegree | M4sid | 8\19 | 505.3 | 12\28 | 514.3 | 12\29 | 496.6 | 4/3 |
Minor 5-sinadegree | m5sid | 9\19 | 568.4 | 13\28 | 557.1 | 14\29 | 579.3 | 11/8, 18/13, 7/5 |
Major 5-sinadegree | M5sid | 10\19 | 631.6 | 15\28 | 642.9 | 15\29 | 620.7 | 10/7, 13/9, 16/11 |
Minor 6-sinadegree | m6sid | 11\19 | 694.7 | 16\28 | 685.7 | 17\29 | 703.4 | 3/2 |
Major 6-sinadegree | M6sid | 12\19 | 757.9 | 18\28 | 771.4 | 18\29 | 744.8 | 14/9 |
Minor 7-sinadegree | m7sid | 13\19 | 821.1 | 19\28 | 814.3 | 20\29 | 827.6 | 8/5 |
Major 7-sinadegree | M7sid | 14\19 | 884.2 | 21\28 | 900.0 | 21\29 | 869.0 | 5/3 |
Minor 8-sinadegree | m8sid | 15\19 | 947.4 | 22\28 | 942.9 | 23\29 | 951.7 | 12/7 |
Major 8-sinadegree | M8sid | 16\19 | 1010.5 | 24\28 | 1028.6 | 24\29 | 993.1 | 16/9, 9/5 |
Perfect 9-sinadegree | P9sid | 17\19 | 1073.7 | 25\28 | 1071.4 | 26\29 | 1075.9 | 13/7, 15/8 |
Augmented 9-sinadegree | A9sid | 18\19 | 1136.8 | 27\28 | 1157.1 | 27\29 | 1117.2 | |
Perfect 10-sinadegree | P10sid | 19\19 | 1200.0 | 28\28 | 1200.0 | 29\29 | 1200.0 | 2/1 |
* Ratios shown are within the 50-integer limit. Automatic search may be inexact. Other interpretations are possible.
Misc
Scale degree | Abbrev. | 7:5 71edt |
17:12 172edt |
10:7 101edt |
Approx. ratios* | |||
---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | |||
Perfect 0-mosdegree | P0md | 0\71 | 0.0 | 0\172 | 0.0 | 0\101 | 0.0 | 1/1 |
Minor 1-mosdegree | m1md | 5\71 | 133.9 | 12\172 | 132.7 | 7\101 | 131.8 | 16/15, 15/14, 14/13, 13/12, 12/11 |
Major 1-mosdegree | M1md | 7\71 | 187.5 | 17\172 | 188.0 | 10\101 | 188.3 | 11/10, 10/9, 9/8, 17/15 |
Minor 2-mosdegree | m2md | 12\71 | 321.5 | 29\172 | 320.7 | 17\101 | 320.1 | 6/5, 17/14, 11/9 |
Major 2-mosdegree | M2md | 14\71 | 375.0 | 34\172 | 376.0 | 20\101 | 376.6 | 11/9, 16/13, 5/4 |
Minor 3-mosdegree | m3md | 19\71 | 509.0 | 46\172 | 508.7 | 27\101 | 508.4 | 4/3, 15/11 |
Major 3-mosdegree | M3md | 21\71 | 562.6 | 51\172 | 564.0 | 30\101 | 564.9 | 15/11, 11/8, 18/13, 7/5 |
Diminished 4-mosdegree | d4md | 24\71 | 642.9 | 58\172 | 641.4 | 34\101 | 640.3 | 10/7, 13/9, 16/11, 19/13 |
Perfect 4-mosdegree | P4md | 26\71 | 696.5 | 63\172 | 696.6 | 37\101 | 696.8 | 3/2 |
Minor 5-mosdegree | m5md | 31\71 | 830.4 | 75\172 | 829.3 | 44\101 | 828.6 | 8/5, 13/8, 18/11 |
Major 5-mosdegree | M5md | 33\71 | 884.0 | 80\172 | 884.6 | 47\101 | 885.1 | 5/3 |
Minor 6-mosdegree | m6md | 38\71 | 1017.9 | 92\172 | 1017.3 | 54\101 | 1016.9 | 16/9, 9/5, 20/11 |
Major 6-mosdegree | M6md | 40\71 | 1071.5 | 97\172 | 1072.6 | 57\101 | 1073.4 | 11/6, 13/7, 15/8, 17/9 |
Perfect 7-mosdegree | P7md | 45\71 | 1205.5 | 109\172 | 1205.3 | 64\101 | 1205.2 | 2/1 |
Augmented 7-mosdegree | A7md | 47\71 | 1259.0 | 114\172 | 1260.6 | 67\101 | 1261.7 | 23/11, 21/10 |
Minor 8-mosdegree | m8md | 50\71 | 1339.4 | 121\172 | 1338.0 | 71\101 | 1337.0 | 15/7, 13/6, 11/5 |
Major 8-mosdegree | M8md | 52\71 | 1393.0 | 126\172 | 1393.3 | 74\101 | 1393.5 | 11/5, 20/9, 9/4 |
Minor 9-mosdegree | m9md | 57\71 | 1526.9 | 138\172 | 1526.0 | 81\101 | 1525.3 | 19/8, 12/5, 17/7, 22/9 |
Major 9-mosdegree | M9md | 59\71 | 1580.5 | 143\172 | 1581.3 | 84\101 | 1581.8 | 5/2 |
Minor 10-mosdegree | m10md | 64\71 | 1714.4 | 155\172 | 1714.0 | 91\101 | 1713.6 | 8/3, 19/7 |
Major 10-mosdegree | M10md | 66\71 | 1768.0 | 160\172 | 1769.3 | 94\101 | 1770.1 | 11/4, 25/9, 14/5 |
Perfect 11-mosdegree | P11md | 71\71 | 1902.0 | 172\172 | 1902.0 | 101\101 | 1902.0 | 3/1 |
* Ratios shown are within the 25-integer limit. Automatic search may be inexact. Other interpretations are possible.
Scale degree | Abbrev. | Supersoft (4:3) 48ed7/2 |
Soft (3:2) 35ed7/2 |
Semisoft (5:3) 57ed7/2 |
Basic (2:1) 22ed7/2 |
Semihard (5:2) 53ed7/2 |
Hard (3:1) 31ed7/2 |
Superhard (4:1) 40ed7/2 | |||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | Steps | ¢ | ||
Perfect 0-mosdegree | P0md | 0\48 | 0.0 | 0\35 | 0.0 | 0\57 | 0.0 | 0\22 | 0.0 | 0\53 | 0.0 | 0\31 | 0.0 | 0\40 | 0.0 |
Minor 1-mosdegree | m1md | 3\48 | 135.6 | 2\35 | 123.9 | 3\57 | 114.1 | 1\22 | 98.6 | 2\53 | 81.8 | 1\31 | 70.0 | 1\40 | 54.2 |
Major 1-mosdegree | M1md | 4\48 | 180.7 | 3\35 | 185.9 | 5\57 | 190.2 | 2\22 | 197.2 | 5\53 | 204.6 | 3\31 | 209.9 | 4\40 | 216.9 |
Minor 2-mosdegree | m2md | 7\48 | 316.3 | 5\35 | 309.8 | 8\57 | 304.4 | 3\22 | 295.7 | 7\53 | 286.4 | 4\31 | 279.8 | 5\40 | 271.1 |
Major 2-mosdegree | M2md | 8\48 | 361.5 | 6\35 | 371.8 | 10\57 | 380.5 | 4\22 | 394.3 | 10\53 | 409.2 | 6\31 | 419.8 | 8\40 | 433.8 |
Perfect 3-mosdegree | P3md | 11\48 | 497.0 | 8\35 | 495.7 | 13\57 | 494.6 | 5\22 | 492.9 | 12\53 | 491.1 | 7\31 | 489.7 | 9\40 | 488.0 |
Augmented 3-mosdegree | A3md | 12\48 | 542.2 | 9\35 | 557.7 | 15\57 | 570.7 | 6\22 | 591.5 | 15\53 | 613.8 | 9\31 | 629.7 | 12\40 | 650.6 |
Minor 4-mosdegree | m4md | 14\48 | 632.6 | 10\35 | 619.7 | 16\57 | 608.8 | 6\22 | 591.5 | 14\53 | 572.9 | 8\31 | 559.7 | 10\40 | 542.2 |
Major 4-mosdegree | M4md | 15\48 | 677.8 | 11\35 | 681.6 | 18\57 | 684.9 | 7\22 | 690.1 | 17\53 | 695.7 | 10\31 | 699.6 | 13\40 | 704.9 |
Minor 5-mosdegree | m5md | 18\48 | 813.3 | 13\35 | 805.6 | 21\57 | 799.0 | 8\22 | 788.7 | 19\53 | 777.5 | 11\31 | 769.6 | 14\40 | 759.1 |
Major 5-mosdegree | M5md | 19\48 | 858.5 | 14\35 | 867.5 | 23\57 | 875.1 | 9\22 | 887.2 | 22\53 | 900.3 | 13\31 | 909.5 | 17\40 | 921.8 |
Minor 6-mosdegree | m6md | 22\48 | 994.0 | 16\35 | 991.5 | 26\57 | 989.3 | 10\22 | 985.8 | 24\53 | 982.1 | 14\31 | 979.5 | 18\40 | 976.0 |
Major 6-mosdegree | M6md | 23\48 | 1039.2 | 17\35 | 1053.4 | 28\57 | 1065.4 | 11\22 | 1084.4 | 27\53 | 1104.9 | 16\31 | 1119.4 | 21\40 | 1138.6 |
Minor 7-mosdegree | m7md | 25\48 | 1129.6 | 18\35 | 1115.4 | 29\57 | 1103.4 | 11\22 | 1084.4 | 26\53 | 1064.0 | 15\31 | 1049.4 | 19\40 | 1030.2 |
Major 7-mosdegree | M7md | 26\48 | 1174.8 | 19\35 | 1177.4 | 31\57 | 1179.5 | 12\22 | 1183.0 | 29\53 | 1186.7 | 17\31 | 1189.4 | 22\40 | 1192.9 |
Minor 8-mosdegree | m8md | 29\48 | 1310.3 | 21\35 | 1301.3 | 34\57 | 1293.7 | 13\22 | 1281.6 | 31\53 | 1268.6 | 18\31 | 1259.3 | 23\40 | 1247.1 |
Major 8-mosdegree | M8md | 30\48 | 1355.5 | 22\35 | 1363.3 | 36\57 | 1369.8 | 14\22 | 1380.2 | 34\53 | 1391.3 | 20\31 | 1399.2 | 26\40 | 1409.7 |
Minor 9-mosdegree | m9md | 33\48 | 1491.1 | 24\35 | 1487.2 | 39\57 | 1483.9 | 15\22 | 1478.7 | 36\53 | 1473.2 | 21\31 | 1469.2 | 27\40 | 1464.0 |
Major 9-mosdegree | M9md | 34\48 | 1536.3 | 25\35 | 1549.2 | 41\57 | 1560.0 | 16\22 | 1577.3 | 39\53 | 1595.9 | 23\31 | 1609.1 | 30\40 | 1626.6 |
Diminished 10-mosdegree | d10md | 36\48 | 1626.6 | 26\35 | 1611.1 | 42\57 | 1598.1 | 16\22 | 1577.3 | 38\53 | 1555.0 | 22\31 | 1539.2 | 28\40 | 1518.2 |
Perfect 10-mosdegree | P10md | 37\48 | 1671.8 | 27\35 | 1673.1 | 44\57 | 1674.2 | 17\22 | 1675.9 | 41\53 | 1677.8 | 24\31 | 1679.1 | 31\40 | 1680.8 |
Minor 11-mosdegree | m11md | 40\48 | 1807.4 | 29\35 | 1797.0 | 47\57 | 1788.3 | 18\22 | 1774.5 | 43\53 | 1759.6 | 25\31 | 1749.1 | 32\40 | 1735.1 |
Major 11-mosdegree | M11md | 41\48 | 1852.5 | 30\35 | 1859.0 | 49\57 | 1864.4 | 19\22 | 1873.1 | 46\53 | 1882.4 | 27\31 | 1889.0 | 35\40 | 1897.7 |
Minor 12-mosdegree | m12md | 44\48 | 1988.1 | 32\35 | 1982.9 | 52\57 | 1978.6 | 20\22 | 1971.7 | 48\53 | 1964.2 | 28\31 | 1958.9 | 36\40 | 1951.9 |
Major 12-mosdegree | M12md | 45\48 | 2033.3 | 33\35 | 2044.9 | 54\57 | 2054.7 | 21\22 | 2070.2 | 51\53 | 2087.0 | 30\31 | 2098.9 | 39\40 | 2114.6 |
Perfect 13-mosdegree | P13md | 48\48 | 2168.8 | 35\35 | 2168.8 | 57\57 | 2168.8 | 22\22 | 2168.8 | 53\53 | 2168.8 | 31\31 | 2168.8 | 40\40 | 2168.8 |
Name
6-note mosses
TAMNAMS suggests the temperament-agnostic name antimachinoid as the name of 1L 5s. The name is based on being the opposite pattern of 5L 1s (machinoid).
TAMNAMS suggests the temperament-agnostic name malic as the name of 2L 4s. The name derives from Latin malus, since apples have two concave ends.
TAMNAMS suggests the temperament-agnostic name triwood as the name of 3L 3s. The name generalizes blackwood[10] and whitewood[14] to 3 periods.
TAMNAMS suggests the temperament-agnostic name citric as the name of 4L 2s. The name references its daughter scales 4L 6s (lime) and 6L 4s (lemon).
TAMNAMS suggests the temperament-agnostic name machinoid as the name of 5L 1s. The name derives from machine temperament. Although this name is directly based off of a temperament, tunings of machine cover the entire tuning range of 5L 1s see TAMNAMS/Appendix #Machinoid (5L 1s) for more information.
7-note mosses
TAMNAMS suggests the temperament-agnostic name onyx as the name of 1L 6s.
TAMNAMS suggests the temperament-agnostic name antidiatonic as the name of 2L 5s. The name is based on being the opposite pattern of 5L 2s (diatonic).
TAMNAMS suggests the temperament-agnostic name mosh as the name of 3L 4s. The name derives from "mohajira-ish", a name from Graham Breed's naming scheme.
TAMNAMS suggests the temperament-agnostic name smitonic as the name of 4L 3s. The name derives from "sharp minor third", referring to the generator's quality.
TAMNAMS suggests the temperament-agnostic name diatonic as the name of 5L 2s. The name commonly refers to a scale with 5 whole and 2 half steps, or 5 large and 2 small steps; see TAMNAMS/Appendix #On the term diatonic for more information.
TAMNAMS suggests the temperament-agnostic name archaeotonic as the name of 6L 1s. The name was originally used as a name for the 6L 1s scale in 13edo.
8-note mosses
TAMNAMS suggests the temperament-agnostic name antipine as the name of 1L 7s. The name is based on being the opposite pattern of 7L 1s (pine).
TAMNAMS suggests the temperament-agnostic name subaric as the name of 2L 6s. The name references to how 2L 6s is the parent scale (or subset scale) of 2L 8s (jaric) and 8L 2s (taric).
TAMNAMS suggests the temperament-agnostic name checkertonic as the name of 3L 5s. The name derives from the Kite guitar checkerboard scale.
TAMNAMS suggests the temperament-agnostic name tetrawood as the name of 4L 4s. The name generalizes blackwood[10] and whitewood[14] to 4 periods.
TAMNAMS suggests the temperament-agnostic name oneirotonic as the name of 5L 3s. The name was originally used as a name for the 5L 3s scale in 13edo.
TAMNAMS suggests the temperament-agnostic name ekic as the name of 6L 2s. The name is an abstraction of echidna and hedgehog temperaments.
TAMNAMS suggests the temperament-agnostic name pine as the name of 7L 1s. The name is an abstraction of porcupine temperament.
9-note mosses
TAMNAMS suggests the temperament-agnostic name antisubneutralic as the name of 1L 8s. The name is based on being the opposite pattern of 8L 1s (subneutralic).
TAMNAMS suggests the temperament-agnostic name balzano as the name of 2L 7s. The name was originally used as a name for the 2L 7s scale in 20edo.
TAMNAMS suggests the temperament-agnostic name tcherepnin as the name of 3L 6s. The name references Alexander Tcherepnin's nine-note scale, corresponding to to 3L 6s in 12edo.
TAMNAMS suggests the temperament-agnostic name gramitonic as the name of 4L 5s. The name derives from "grave minor third", referring to the generator's quality.
TAMNAMS suggests the temperament-agnostic name semiquartal as the name of 5L 4s. The name derives from "half-fourth", referring to the generator's quality.
TAMNAMS suggests the temperament-agnostic name hyrulic as the name of 6L 3s. The name is an abstraction of triforce temperament.
TAMNAMS suggests the temperament-agnostic name armotonic as the name of 7L 2s. The name references Armodue, a system of theory for the 7L 2s scale in 16edo.
TAMNAMS suggests the temperament-agnostic name subneutralic as the name of 8L 1s. The name derives from "subneutral", referring to the generator's quality.
10-note mosses
TAMNAMS suggests the temperament-agnostic name antisinatonic as the name of 1L 9s. The name is based on being the opposite pattern of 9L 1s (sinatonic).
TAMNAMS suggests the temperament-agnostic name jaric as the name of 2L 8s. The name is an abstraction of pajara, injera, and diaschismic temperaments.
TAMNAMS suggests the temperament-agnostic name sephiroid as the name of 3L 7s. The name derives from sephiroth temperament. Although this name is directly based off of a temperament, tunings of sephiroth cover the entire tuning range of 3L 7s; see TAMNAMS/Appendix #Sephiroid (3L 7s) for more information.
TAMNAMS suggests the temperament-agnostic name lime as the name of 4L 6s. The name references its parent scale 4L 2s (citric).
TAMNAMS suggests the temperament-agnostic name pentawood as the name of 5L 5s. The name generalizes blackwood[10] and whitewood[14] to 5 periods.
TAMNAMS suggests the temperament-agnostic name lemon as the name of 6L 4s. The name references its parent scale 4L 2s (citric), as well as indirectly referencing lemba temperament.
TAMNAMS suggests the temperament-agnostic name dicoid as the name of 7L 3s. The name derives from dichotic and dicot temperament. Although this name is directly based off of a temperament, tunings of dichotic and dicot cover the entire tuning range of 7L 3s; see TAMNAMS/Appendix #Dicoid (7L 3s) for more information.
TAMNAMS suggests the temperament-agnostic name taric as the name of 8L 2s. The name derives from Hindi aṭhārah for 18, in reference to 18edo containing basic 8L 2s.
TAMNAMS suggests the temperament-agnostic name sinatonic as the name of 9L 1s. The name derives from the sinaic, referring to the generator's quality.
Sandbox for proposed templates
Cent ruler
MOS characteristics
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.
UDP | Cyclic order |
Step pattern |
Scale degree (diadegree) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
6|0 | 1 | LLLsLLs | Perf. | Maj. | Maj. | Aug. | Perf. | Maj. | Maj. | Perf. |
5|1 | 5 | LLsLLLs | Perf. | Maj. | Maj. | Perf. | Perf. | Maj. | Maj. | Perf. |
4|2 | 2 | LLsLLsL | Perf. | Maj. | Maj. | Perf. | Perf. | Maj. | Min. | Perf. |
3|3 | 6 | LsLLLsL | Perf. | Maj. | Min. | Perf. | Perf. | Maj. | Min. | Perf. |
2|4 | 3 | LsLLsLL | Perf. | Maj. | Min. | Perf. | Perf. | Min. | Min. | Perf. |
1|5 | 7 | sLLLsLL | Perf. | Min. | Min. | Perf. | Perf. | Min. | Min. | Perf. |
0|6 | 4 | sLLsLLL | Perf. | Min. | Min. | Perf. | Dim. | Min. | Min. | Perf. |
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-diastep | Perfect 0-diastep | P0dias | 0 | 0.0¢ |
1-diastep | Minor 1-diastep | m1dias | s | 0.0¢ to 171.4¢ |
Major 1-diastep | M1dias | L | 171.4¢ to 240.0¢ | |
2-diastep | Minor 2-diastep | m2dias | L + s | 240.0¢ to 342.9¢ |
Major 2-diastep | M2dias | 2L | 342.9¢ to 480.0¢ | |
3-diastep | Perfect 3-diastep | P3dias | 2L + s | 480.0¢ to 514.3¢ |
Augmented 3-diastep | A3dias | 3L | 514.3¢ to 720.0¢ | |
4-diastep | Diminished 4-diastep | d4dias | 2L + 2s | 480.0¢ to 685.7¢ |
Perfect 4-diastep | P4dias | 3L + s | 685.7¢ to 720.0¢ | |
5-diastep | Minor 5-diastep | m5dias | 3L + 2s | 720.0¢ to 857.1¢ |
Major 5-diastep | M5dias | 4L + s | 857.1¢ to 960.0¢ | |
6-diastep | Minor 6-diastep | m6dias | 4L + 2s | 960.0¢ to 1028.6¢ |
Major 6-diastep | M6dias | 5L + s | 1028.6¢ to 1200.0¢ | |
7-diastep | Perfect 7-diastep | P7dias | 5L + 2s | 1200.0¢ |
MOS intervals (using large/small instead of MmAPd)
Interval | Size(s) | Steps | Range in cents | Abbrev. |
---|---|---|---|---|
0-diastep (root) | Perfect 0-diastep | 0 | 0.0¢ | P0ms |
1-diastep | Small 1-diastep | s | 0.0¢ to 171.4¢ | s1ms |
Large 1-diastep | L | 171.4¢ to 240.0¢ | L1ms | |
2-diastep | Small 2-diastep | L + s | 240.0¢ to 342.9¢ | s2ms |
Large 2-diastep | 2L | 342.9¢ to 480.0¢ | L2ms | |
3-diastep | Small 3-diastep | 2L + s | 480.0¢ to 514.3¢ | s3ms |
Large 3-diastep | 3L | 514.3¢ to 720.0¢ | L3ms | |
4-diastep | Small 4-diastep | 2L + 2s | 480.0¢ to 685.7¢ | s4ms |
Large 4-diastep | 3L + s | 685.7¢ to 720.0¢ | L4ms | |
5-diastep | Small 5-diastep | 3L + 2s | 720.0¢ to 857.1¢ | s5ms |
Large 5-diastep | 4L + s | 857.1¢ to 960.0¢ | L5ms | |
6-diastep | Small 6-diastep | 4L + 2s | 960.0¢ to 1028.6¢ | s6ms |
Large 6-diastep | 5L + s | 1028.6¢ to 1200.0¢ | L6ms | |
7-diastep (octave) | Perfect 7-diastep | 5L + 2s | 1200.0¢ | P7ms |
MOS mode degrees (using large/small instead of MmAPd)
Mode names | Ordering | Step pattern | Scale degree | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Default | Names | Bri. | Rot. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5L 2s 6|0 | Lydian | 1 | 1 | LLLsLLs | Perf. | Lg. | Lg. | Lg. | Lg. | Lg. | Lg. | Perf. |
5L 2s 5|1 | Ionian (major) | 2 | 5 | LLsLLLs | Perf. | Lg. | Lg. | Sm. | Lg. | Lg. | Lg. | Perf. |
5L 2s 4|2 | Mixolydian | 3 | 2 | LLsLLsL | Perf. | Lg. | Lg. | Sm. | Lg. | Lg. | Sm. | Perf. |
5L 2s 3|3 | Dorian | 4 | 6 | LsLLLsL | Perf. | Lg. | Sm. | Sm. | Lg. | Lg. | Sm. | Perf. |
5L 2s 2|4 | Aeolian (minor) | 5 | 3 | LsLLsLL | Perf. | Lg. | Sm. | Sm. | Lg. | Sm. | Sm. | Perf. |
5L 2s 1|5 | Phrygian | 6 | 7 | sLLLsLL | Perf. | Sm. | Sm. | Sm. | Lg. | Sm. | Sm. | Perf. |
5L 2s 0|6 | Locrian | 7 | 4 | sLLsLLL | Perf. | Sm. | Sm. | Sm. | Sm. | Sm. | Sm. | Perf. |
KB vis
Type | Visualization | Individual steps | Notes | |||
---|---|---|---|---|---|---|
Start | Large step | Small step | End | |||
Small vis | ┌╥╥╥┬╥╥┬┐ │║║║│║║││ │││││││││ └┴┴┴┴┴┴┴┘ |
┌ │ │ └ |
╥ ║ │ ┴ |
┬ │ │ ┴ |
┐ │ │ ┘ |
Not enough room for note names. |
Large vis | ┌──┬─┬─┬─┬─┬─┬──┬──┬─┬─┬─┬──┬───┐ │░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│ │░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│ │░░└┬┘░└┬┘░└┬┘░░│░░└┬┘░└┬┘░░│░░░│ │░░░│░░░│░░░│░░░│░░░│░░░│░░░│░░░│ │░█░│░░░│░░░│░░░│░░░│░░░│░░░│░█░│ └───┴───┴───┴───┴───┴───┴───┴───┘ |
┌── │ │ │ │ │ X └── |
┬─┬─ │ │ │ │ └┬┘ │ │ X ─┴── |
─┬── │ │ │ │ │ X ─┴── |
─┐ │ │ │ │ │ ─┘ |
Black squares indicate notes one equave apart.
Contains shading characters, meant for spacing. |
Type | Visualization | Individual steps | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|
Start | Size 1 | Size 2 | Size 3 | Size 4 | Size 5 | End | |||
Multisize vis (large) | ┌────┬───┬──┬───┬──┬─┬─┬────┬────┬─┬─┬──┬─┬─┬────┬──────┐ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░├─┼─┤░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░├───┤░░├─┴─┤░░░░│░░░░├─┼─┤░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░├─┴─┤░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░│▒▒▒│░░░░│░░░░░░│ │░░░░└─┬─┘░░└─┬─┘░░└─┬─┘░░░░│░░░░└─┼─┘░░└─┬─┘░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ └──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘ |
┌──── │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ └──── |
────┬── ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ────┴── |
┬───┬── │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬───┬── │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ ├───┤░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬─┬─┬── │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ ├─┴─┤░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬─┬─┬── │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ ├─┼─┤░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ └─┼─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
──┐ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ──┘ |
X's are placeholders for note names.
Naturals only, as there is not enough room for accidentals. May not display correctly on some devices. Testing with unintrusive filler characters |
TAMNAMS use
This article assumes TAMNAMS conventions for naming scale degrees, intervals, and step ratios.
Names for the scale degrees of xL ys, the position of the scales tones, are called mosdegrees, or prefixdegrees. Its intervals, the pitch difference between any two tones, are based on the number of large and small steps between them and are called mossteps, or prefixsteps. Both mosdegrees and mossteps use 0-indexed numbering, as opposed to using 1-indexed ordinals, such as mos-1st instead of 0-mosstep. The use of 1-indexed ordinal names is discouraged for nondiatonic MOS scales.
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
6- to 10-note mosses | 1L 5s (selenite) | 2L 4s ( | 3L 3s | 4L 2 | 5L 1s | ||||||||
Monolarge family | 1L 5s (selenite) | 1L 6s (onyx) | 1L 7s (spinel) | 1L 8s (agate) | 1L 9s (olivine) | ||||||||
Diatonic mos family |
|
Encoding scheme for module:mos
Mossteps as a vector of L's and s's
For an arbitrary step sequence consisting of L's and s's, the sum of the quantities of L's and s's denotes what mosstep it is. EG, "LLLsL" is a 5-mosstep since it has 5 L's and s's total. This can be expressed as a vector denoting how many L's and s's there are. EG, "LLLsL" becomes { 4, 1 }, denoting 4 large steps and 1 small step.
Alterations by adding a chroma always adds one L and subtracts one s (or subtracts one L and adds one s, if lowering by a chroma), so the sum of L's and s's, even if one of the quantities is negative, will always denote what k-mosstep that interval is. EG, raising "LLLsL" by a chroma produces the vector { 5, 0 }, and raising it by another chroma produces the vector { 6, -1 }.
Through this, the "original size" of the interval can always be deduced.
EG, the vector { 6, -2 } is given, assuming a mos of 5L 2s. Adding 6 and -2 shows that the interval is a 4-mosstep. Taking the brightest mode of 5L 2s (LLLsLLs) and truncating it to the first 4 steps (LLLs), the corresponding vector is { 3, 1 }. This is the vector to compare to. Subtracting the given vector from the comparison vector ( as { 6-3, -2-1 }) produces the vector { 3, -3 }, meaning that { 6, -2 } is the large 4-mosstep raised by 3 chromas. (A shortcut can be employed by simply subtracting only the L-values.) The decoding scheme below shows how the "large 4-mosstep plus 3 chromas" can be decoded into more familiar terms. In this example, since the large 4-mosstep is the perfect bright generator, adding 3 chromas makes it triply augmented.
Value | Encoded | Decoded | ||||
---|---|---|---|---|---|---|
Intervals with 2 sizes | Intervals with 1 size | Nonperfectable intervals | Bright gen | Dark gen | Period intervals | |
2 | Large plus 2 chromas | Perfect plus 2 chromas | 2× Augmented | 2× Augmented | 3× Augmented | 2× Augmented |
1 | Large plus 1 chroma | Perfect plus 1 chroma | Augmented | Augmented | 2× Augmented | Augmented |
0 | Large | Perfect | Major | Perfect | Augmented | Perfect |
-1 | Small | Perfect minus 1 chroma | Minor | Diminished | Perfect | Diminished |
-2 | Small minus 1 chroma | Perfect minus 2 chromas | Diminished | 2× Diminished | Diminished | 2× Diminished |
-3 | Small minus 2 chromas | Perfect minus 3 chromas | 2× Diminished | 3× Diminished | 2× Diminished | 3× Diminished |
Rationale:
- Vectors of L's and s's can always be translated back to the original k-mosstep, no matter how many chromas were added. The "unmodified" vector (the large k-mosstep, or perfect k-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas.
- Alterations by entire large steps or small steps is considered interval arithmetic.
- Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.
Examples of encodings for 5L 2s
Interval in mossteps | Encoding | Decoding | Standard notation in the key of F | |
---|---|---|---|---|
Mossteps | Chroma | |||
0 | 0 | 0 | Perfect 0-diastep | F |
s | 1 | -1 | Minor 1-diastep | Gb |
L | 1 | 0 | Major 1-diastep | G |
L + s | 2 | -1 | Minor 2-diastep | Ab |
2L | 2 | 0 | Major 2-diastep | A |
2L + s | 3 | -1 | Perfect 3-diastep | Bb |
3L | 3 | 0 | Augmented 3-diastep | B |
2L + 2s | 4 | -1 | Diminished 4-diastep | Cb |
3L + s | 4 | 0 | Perfect 4-diastep | C |
3L + 2s | 5 | -1 | Minor 5-diastep | Db |
4L + s | 5 | 0 | Major 5-diastep | D |
4L + 2s | 6 | -1 | Minor 6-diastep | Eb |
5L + s | 6 | 0 | Major 6-diastep | E |
5L + 2s | 7 | 0 | Perfect 7-diastep | F |
Mode names | Ordering | Step pattern | Scale degree (encoded) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Default | Names | Bri. | Rot. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5L 2s 6|0 | Lydian | 1 | 1 | LLLsLLs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5L 2s 5|1 | Ionian (major) | 2 | 5 | LLsLLLs | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
5L 2s 4|2 | Mixolydian | 3 | 2 | LLsLLsL | 0 | 0 | 1 | -1 | 0 | 0 | -1 | 0 |
5L 2s 3|3 | Dorian | 4 | 6 | LsLLLsL | 0 | 0 | -1 | -1 | 0 | 0 | -1 | 0 |
5L 2s 2|4 | Aeolian (minor) | 5 | 3 | LsLLsLL | 0 | 0 | -1 | -1 | 0 | -1 | -1 | 0 |
5L 2s 1|5 | Phrygian | 6 | 7 | sLLLsLL | 0 | -1 | -1 | -1 | 0 | -1 | -1 | 0 |
5L 2s 0|6 | Locrian | 7 | 4 | sLLsLLL | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 |