Archytas clan

From Xenharmonic Wiki
(Redirected from Ringo)
Jump to navigation Jump to search

The archytas clan (or archy family) tempers out the Archytas' comma, 64/63. This means a stack of two 3/2 fifths octave-reduced equals a whole tone of 8/7~9/8 tempered together; two of these tones or equivalently four stacked fifths octave-reduced equal a 9/7 major third. Note the similarity in function to 81/80 in meantone, where four stacked fifths octave-reduced equal a 5/4 major third. This leads to tunings with 3's and 7's quite sharp, such as those of 22edo.

This article focuses on rank-2 temperaments. See Archytas family for the rank-3 temperament resulting from tempering out 64/63 alone in the full 7-limit.

Archy

Subgroup: 2.3.7

Comma list: 64/63

Sval mapping[1 0 6], 0 1 -2]]

sval mapping generators: ~2, ~3

Gencom mapping[1 1 0 4], 0 1 0 -2]]

gencom: [2 3/2; 64/63]

Optimal tunings:

  • CTE: ~3/2 = 709.5948
  • POTE: ~3/2 = 709.321

Optimal ET sequence2, 3, 5, 12, 17, 22, 137bdd, 159bddd, 181bbddd

Badness: 0.00464

Scales: archy5, archy7, archy12

Overview to extensions

Adding 245/243 to the list of commas gives superpyth; 2430/2401 gives quasisuper; 36/35 gives dominant; 360/343 gives schism; 6860/6561 gives ultrapyth; 33614/32805 gives quasiultra; 16/15 gives mother. These all use the same generators as archy.

50/49 gives pajara with a semioctave period. 126/125 gives augene with a 1/3-octave period. 28/27 gives blacksmith with a 1/5-octave period. 686/675 gives beatles, splitting the fifth in two. 250/243 gives porcupine, splitting the fourth in three. 4375/4374 gives modus, splitting the fifth in four. 3125/3087 gives passion, splitting the fourth in five.

Discussed under their respective 5-limit families are:

The rest are considered below.

Supra

Subgroup: 2.3.7.11

Comma list: 64/63, 99/98

Sval mapping: [1 0 6 13], 0 1 -2 -6]]

Gencom mapping: [1 1 0 4 7], 0 1 0 -2 -6]]

gencom: [2 3/2; 64/63 99/98]

Optimal tunings:

  • CTE: ~3/2 = 708.4564
  • POTE: ~3/2 = 707.192

Optimal ET sequence: 5, 12, 17, 39d, 56d

Badness: 0.00933

Scales: supra7, supra12

Supraphon

Subgroup: 2.3.7.11.13

Comma list: 64/63, 78/77, 99/98

Sval mapping: [1 0 6 13 18], 0 1 -2 -6 -9]]

Gencom mapping: [1 1 0 4 7 9], 0 1 0 -2 -6 -9]]

gencom: [2 3/2; 64/63 78/77 99/98]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 707.3440
  • POTE: ~2 = 1\1, ~3/2 = 706.137

Optimal ET sequence: 12f, 17

Badness: 0.0111

Scales: supra7, supra12

Superpyth

In the 5-limit, superpyth tempers out 20480/19683. This temperament has a fifth generator of ~3/2 = ~710¢ and ~5/4 is found at +9 generator steps, as an augmented second (C-D#). It also has a weak extension, bipyth (10cd & 22), tempering out the same 5-limit comma as the superpyth, but with a half-octave period and the jubilisma (50/49) rather than the Archytas comma tempered out.

Subgroup: 2.3.5

Comma list: 20480/19683

Mapping[1 0 -12], 0 1 9]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.3933
  • POTE: ~2 = 1\1, ~3/2 = 710.078

Optimal ET sequence5, 17, 22, 49, 120b, 169bbc

Badness: 0.135141

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 245/243

Mapping[1 0 -12 6], 0 1 9 -2]]

Wedgie⟨⟨ 1 9 -2 12 -6 -30 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.5907
  • POTE: ~2 = 1\1, ~3/2 = 710.291

Optimal ET sequence5, 17, 22, 27, 49, 174bbcddd

Badness: 0.032318

11-limit

The canonical extension to the 13-limit finds the ~11/8 at +16 generator steps, as a double augmented second (C-Dx) and finds the ~13/8 at +13 generator steps, as a double augmented fourth (C-Fx).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 245/243

Mapping: [1 0 -12 6 -22], 0 1 9 -2 16]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.5143
  • POTE: ~2 = 1\1, ~3/2 = 710.175

Optimal ET sequence: 22, 27e, 49

Badness: 0.024976

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 100/99

Mapping: [1 0 -12 6 -22 -17], 0 1 9 -2 16 13]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.8362
  • POTE: ~2 = 1\1, ~3/2 = 710.479

Optimal ET sequence: 22, 27e, 49, 76bcde

Badness: 0.024673

Thomas

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 100/99, 169/168, 245/243

Mapping: [1 1 -3 4 -6 4], 0 2 18 -4 32 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~16/13 = 354.7594
  • POTE: ~2 = 1\1, ~16/13 = 355.036

Optimal ET sequence: 27e, 44, 71d, 98bde

Badness: 0.049183

Suprapyth

Suprapyth finds the ~11/8 at the diminished fifth (C-Gb), and finds the ~13/8 at the diminished seventh (C-Bbb).

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 99/98

Mapping: [1 0 -12 6 13], 0 1 9 -2 -6]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.3561
  • POTE: ~2 = 1\1, ~3/2 = 709.495

Optimal ET sequence: 5, 17, 22

Badness: 0.032768

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 65/63, 99/98

Mapping: [1 0 -12 6 13 18], 0 1 9 -2 -6 -9]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 708.7020
  • POTE: ~2 = 1\1, ~3/2 = 708.703

Optimal ET sequence: 5f, 17, 22

Badness: 0.036336

Quasisuper

Quasisuper can be described as 17c & 22, with the ~5/4 mapped to -13 generator steps, as a double diminished fifth (C-Gbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 2430/2401

Mapping[1 0 23 6], 0 1 -13 -2]]

Wedgie⟨⟨ 1 -13 -2 -23 -6 32 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 708.7690
  • POTE: ~2 = 1\1, ~3/2 = 708.328

Optimal ET sequence17c, 22, 61d

Badness: 0.063794

Quasisupra

Quasisupra can be viewed as an extension of the excellent 2.3.7.11 temperament supra, with the quasisuper mapping of 5 thrown in, rather than the superpyth mapping of 5 (which results in suprapyth).

Subgroup: 2.3.5.7.11

Comma list: 64/63, 99/98, 121/120

Mapping: [1 0 23 6 13], 0 1 -13 -2 -6]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 708.7131
  • POTE: ~2 = 1\1, ~3/2 = 708.205

Optimal ET sequence: 17c, 22, 39d, 61d

Badness: 0.032203

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 78/77, 91/90, 121/120

Mapping: [1 0 23 6 13 18], 0 1 -13 -2 -6 -9]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 708.4106
  • POTE: ~2 = 1\1, ~3/2 = 708.004

Optimal ET sequence: 17c, 22, 39d, 61df, 100bcdf

Badness: 0.030219

Quasisoup

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2430/2401

Mapping: [1 0 23 6 -22], 0 1 -13 -2 16]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 709.0435
  • POTE: ~2 = 1\1, ~3/2 = 709.021

Optimal ET sequence: 22

Badness: 0.083490

Ultrapyth

Ultrapyth can be viewed as an extension of the excellent 2.3.7.13/5 oceanfront temperament, mapping the ~5/4 to +14 fifths as a double augmented unison (C-Cx).

Subgroup: 2.3.5.7

Comma list: 64/63, 6860/6561

Mapping[1 0 -20 6], 0 1 14 -2]]

Wedgie⟨⟨ 1 14 -2 20 -6 -44 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 713.2179
  • POTE: ~2 = 1\1, ~3/2 = 713.651

Optimal ET sequence5, 27c, 32, 37

Badness: 0.108466

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 2401/2376

Mapping: [1 0 -20 6 21], 0 1 14 -2 -11]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 713.2816
  • POTE: ~2 = 1\1, ~3/2 = 713.395

Optimal ET sequence: 5, 32, 37

Badness: 0.068238

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 1573/1568

Mapping: [1 0 -20 6 21 -25], 0 1 14 -2 -11 18]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 713.3086
  • POTE: ~2 = 1\1, ~3/2 = 713.500

Optimal ET sequence: 5, 32, 37

Badness: 0.049172

Ultramarine

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 3773/3645

Mapping: [1 0 -20 6 -38], 0 1 14 -2 26]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 713.3952
  • POTE: ~2 = 1\1, ~3/2 = 713.791

Optimal ET sequence: 5e, 32e, 37, 79bce

Badness: 0.078068

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 847/845

Mapping: [1 0 -20 6 -38 -25], 0 1 14 -2 26 18]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 713.7079
  • POTE: ~2 = 1\1, ~3/2 = 713.811

Optimal ET sequence: 5e, 32e, 37, 79bcef

Badness: 0.045653

Quasiultra

Quasiultra is to ultrapyth what quasisuper is to superpyth. It is the 27 & 32 temperament, mapping the ~5/4 to -18 fifths as a double diminished sixth (C-Abbb).

Subgroup: 2.3.5.7

Comma list: 64/63, 33614/32805

Mapping[1 0 31 6], 0 1 -18 -2]]

Wedgie⟨⟨ 1 -18 -2 -31 -6 46 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 711.8377
  • CWE: ~2 = 1\1, ~3/2 = 711.5429

Optimal ET sequence27, 86bd, 113bcd, 140bbcd

Badness: 0.132

Schism

Schism tempers out the schisma, mapping the ~5/4 to -8 fifths as a diminished fourth (C-Fb) as does any schismic temperament. 12edo is recommendable tuning, though 29edo (29d val), 41edo (41d val), and 53edo (53d val) can be used.

Subgroup: 2.3.5.7

Comma list: 64/63, 360/343

Mapping[1 0 15 6], 0 1 -8 -2]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 702.2696
  • POTE: ~2 = 1\1, ~3/2 = 701.556

Wedgie⟨⟨ 1 -8 -2 -15 -6 18 ]]

Optimal ET sequence5c, 7c, 12

Badness: 0.056648

11-limit

Subgroup: 2.3.5.7.11

Comma list: 45/44, 64/63, 99/98

Mapping: [1 0 15 6 13], 0 1 -8 -2 -6]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 703.3833
  • POTE: ~2 = 1\1, ~3/2 = 702.136

Optimal ET sequence: 5c, 7ce, 12, 29de

Badness: 0.037482

Beatles

For the 5-limit version of this temperament, see High badness temperaments #Beatles.

Subgroup: 2.3.5.7

Comma list: 64/63, 686/675

Mapping[1 1 5 4], 0 2 -9 -4]]

Wedgie⟨⟨ 2 -9 -4 -19 -12 16 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~49/40 = 356.6336
  • POTE: ~2 = 1\1, ~49/40 = 355.904

Optimal ET sequence10, 17c, 27, 64b, 91bcd, 118bccd

Badness: 0.045872

Music

11-limit

Subgroup: 2.3.5.7.11

Comma list: 64/63, 100/99, 686/675

Mapping: [1 1 5 4 10], 0 2 -9 -4 -22]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~49/40 = 356.7189
  • POTE: ~2 = 1\1, ~49/40 = 356.140

Optimal ET sequence: 10e, 17cee, 27e, 64be, 91bcdee

Badness: 0.045639

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 64/63, 91/90, 100/99, 169/168

Mapping: [1 1 5 4 10 4], 0 2 -9 -4 -22 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~16/13 = 356.7223
  • POTE: ~2 = 1\1, ~16/13 = 356.229

Optimal ET sequence: 10e, 27e, 37, 64be

Badness: 0.030161

Ringo

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 540/539

Mapping: [1 1 5 4 2], 0 2 -9 -4 5]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/9 = 355.9918
  • POTE: ~2 = 1\1, ~11/9 = 355.419

Optimal ET sequence: 10, 17c, 27e

Badness: 0.032863

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 91/90

Mapping: [1 1 5 4 2 4], 0 2 -9 -4 5 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~11/9 = 356.0040
  • POTE: ~2 = 1\1, ~11/9 = 355.456

Optimal ET sequence: 10, 17c, 27e

Badness: 0.022619

Beetle

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 686/675

Mapping: [1 1 5 4 -1], 0 2 -9 -4 15]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~49/40 = 356.6943
  • POTE: ~2 = 1\1, ~49/40 = 356.710

Optimal ET sequence: 10, 27, 37

Badness: 0.058084

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 55/54, 64/63, 91/90, 169/168

Mapping: [1 1 5 4 -1 4], 0 2 -9 -4 15 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~16/13 = 356.6997
  • POTE: ~2 = 1\1, ~16/13 = 356.701

Optimal ET sequence: 10, 27, 37

Badness: 0.033971

Progress

For the 5-limit version of this temperament, see High badness temperaments #Progress.

Subgroup: 2.3.5.7

Comma list: 64/63, 392/375

Mapping[1 0 5 6], 0 3 -5 -6]]

mapping generators: ~2, ~10/7

Wedgie⟨⟨ 3 -5 -6 -15 -18 0 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/7 = 638.7819
  • POTE: ~2 = 1\1, ~10/7 = 637.878

Optimal ET sequence2, 13, 15, 32c

Badness: 0.066400

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4], 0 3 -5 -6 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/7 = 638.8462
  • POTE: ~2 = 1\1, ~10/7 = 637.915

Optimal ET sequence: 2, 13, 15, 32c, 47bc

Badness: 0.031036

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 66/65, 77/75

Mapping: [1 0 5 6 4 0], 0 3 -5 -6 -1 7]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/7 = 637.8705
  • POTE: ~2 = 1\1, ~10/7 = 637.635

Optimal ET sequence: 15, 17c, 32cf

Badness: 0.026214

Progressive

Subgroup: 2.3.5.7.11.13

Comma list: 26/25, 56/55, 64/63, 77/75

Mapping: [1 0 5 6 4 9], 0 3 -5 -6 -1 -10]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~10/7 = 637.7968
  • POTE: ~2 = 1\1, ~10/7 = 636.761

Optimal ET sequence: 2f, 15f, 17c

Badness: 0.032721

Fervor

For the 5-limit version of this temperament, see High badness temperaments #Fervor.

Subgroup: 2.3.5.7

Comma list: 64/63, 9604/9375

Mapping[1 4 -2 -2], 0 -5 9 10]]

mapping generators: ~2, ~7/5

Wedgie⟨⟨ 5 -9 -10 -26 -30 2 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/5 = 577.3535
  • POTE: ~2 = 1\1, ~7/5 = 577.776

Optimal ET sequence2, 25, 27

Badness: 0.108455

11-limit

Subgroup: 2.3.5.7.11

Comma list: 56/55, 64/63, 1350/1331

Mapping: [1 4 -2 -2 3], 0 -5 9 10 1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/5 = 577.2958
  • POTE: ~2 = 1\1, ~7/5 = 577.850

Optimal ET sequence: 2, 25e, 27e

Badness: 0.052054

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 56/55, 64/63, 78/77, 507/500

Mapping: [1 4 -2 -2 3 -4], 0 -5 9 10 1 16]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~7/5 = 577.3744
  • POTE: ~2 = 1\1, ~7/5 = 578.060

Optimal ET sequence: 2f, 27e

Badness: 0.039705

Sixix

Sixix is related to the kleismic family in a way similar to the one between meantone and mavila. In both cases the generator is nominally a 6/5 and the complexity to generate major and minor chords is the same, but in sixix it is tuned extremely sharply, to the point where the 3rd and 5th harmonics are reached by going down instead of up, inverting the logic of chord construction.

Subgroup: 2.3.5

Comma list: 3125/2916

Mapping[1 3 4], 0 -5 -6]]

mapping generators: ~2, ~6/5

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 338.005
  • POTE: ~2 = 1\1, ~6/5 = 338.365

Optimal ET sequence7, 25, 32, 39c

Badness: 0.153088

7-limit

Subgroup: 2.3.5.7

Comma list: 64/63, 3125/2916

Mapping[1 3 4 0], 0 -5 -6 10]]

Wedgie⟨⟨ 5 6 -10 -2 -30 -40 ]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 337.5192
  • POTE: ~2 = 1\1, ~6/5 = 337.442

Optimal ET sequence7, 18d, 25, 32

Badness: 0.158903

11-limit

Subgroup: 2.3.5.7.11

Comma list: 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6], 0 -5 -6 10 -9]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 337.7486
  • POTE: ~2 = 1\1, ~6/5 = 337.564

Optimal ET sequence: 7, 25e, 32

Badness: 0.070799

13-limit

Subgroup: 2.3.5.7.11.13

Comma list: 40/39, 55/54, 64/63, 125/121

Mapping: [1 3 4 0 6 4], 0 -5 -6 10 -9 -1]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 337.7925
  • POTE: ~2 = 1\1, ~6/5 = 337.483

Optimal ET sequence: 7, 25e, 32f

Badness: 0.046206

17-limit

Subgroup: 2.3.5.7.11.13.17

Comma list: 40/39, 55/54, 64/63, 85/84, 125/121

Mapping: [1 3 4 0 6 4 1], 0 -5 -6 10 -9 -1 11]]

Optimal tunings:

  • CTE: ~2 = 1\1, ~6/5 = 337.6293
  • POTE: ~2 = 1\1, ~6/5 = 337.513

Optimal ET sequence: 7, 25e, 32f

Badness: 0.039224