User:Ganaram inukshuk/Sandbox: Difference between revisions
scrollable area thing |
No edit summary |
||
(107 intermediate revisions by the same user not shown) | |||
Line 1: | Line 1: | ||
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.) | This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.) | ||
<pre>{{subst:User:Ganaram inukshuk/JI ratios|Int Limit=50|Prime Limit=7|Equave=2/1}}</pre> | |||
< | |||
produces | |||
| | |||
1/1, 50/49, 49/48, 36/35, 28/27, 25/24, 21/20, 16/15, 15/14, 27/25, 49/45, 35/32, 10/9, 28/25, 9/8, 8/7, 7/6, 32/27, 25/21, 6/5, 49/40, 5/4, 32/25, 9/7, 35/27, 21/16, 4/3, 27/20, 49/36, 48/35, 25/18, 7/5, 45/32, 10/7, 36/25, 35/24, 40/27, 3/2, 32/21, 49/32, 14/9, 25/16, 8/5, 45/28, 49/30, 5/3, 42/25, 27/16, 12/7, 7/4, 16/9, 25/14, 9/5, 49/27, 50/27, 28/15, 15/8, 40/21, 48/25, 27/14, 35/18, 49/25, 2/1 | |||
== MOS scalesig == | |||
| | {{Infobox|Left Link=Neutral 3rd|Title=Major 3rd|Right Link=Perfect 4th|Data 1='''Interval range information'''|Header 2=Approximate range|Data 2=180{{c}} - 240{{c}}|Header 3=Complement|Data 3=Minor 6th|Data 5='''JI examples'''|Data 6=5/4, 9/7, 81/64|Data 10='''Generated scales'''|Data 11=4L 3s, 4L 7s}} | ||
| | |||
| | == MOS tuning spectrum (AKA, scale tree) == | ||
| | |||
| | {{MOS tuning spectrum | ||
| | | Scale Signature = 1L 1s | ||
| | | Int Limit = 13 | ||
| 8 | }} | ||
| 7 | {{MOS tuning spectrum | ||
| | | Scale Signature= 3L 4s | ||
| | | Int Limit = 20 | ||
| | | 6/5 = [[Mohaha]] / ptolemy↑ | ||
| 5 | | | 5/4 = Mohaha / migration / [[mohajira]] | ||
| | | 11/8 = Mohaha / mohamaq | ||
| | | 7/5 = Mohaha / [[neutrominant]] | ||
| | | 10/7 = [[Hemif]] / [[hemififths]] | ||
| | | 11/7 = [[Suhajira]] | ||
| 13/8 = Golden suhajira (354.8232¢) | |||
| 5/3 = Suhajira / [[ringo]] | |||
| 12/7 = [[Beatles]] | |||
| | | 13/5 = Unnamed golden tuning (366.2564¢) | ||
| | | 7/2 = [[Sephiroth]] | ||
| 9/2 = [[Muggles]] | |||
| 5/1 = [[Magic]] | |||
| 6/1 = [[Würschmidt]]↓ | |||
}} | |||
{{MOS tuning spectrum | |||
| Depth = 3 | |||
| Scale Signature= 3L 4s<3/2> | |||
}} | |||
== MOS intro== | |||
First sentence: | |||
*Single-period 2/1-equivalent: '''xL ys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps. | |||
*Multi-period 2/1-equivalent: '''nxL nys''' (TAMNAMS name ''tamnams-name''), also called ''other-name'', is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each. | |||
*Single-period 3/1-equivalent: '''3/1-equivalent xL ys''', also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps. | |||
*Multi-period 3/1-equivalent: '''3/1-equivalent nxL nys''', also called ''other-name'', is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each. | |||
*Single-period 3/2-equivalent: '''3/2-equivalent xL ys''', also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps. | |||
*Multi-period 3/2-equivalent: '''3/2-equivalent nxL nys''', also called ''other-name'', is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each. | |||
Second sentence: | |||
*Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents. | |||
Octave-equivalent relational info: | |||
*Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard. | |||
*Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones. | |||
Rothenprop: | |||
*Single-period: Scales of this form are always proper because there is only one small step. | |||
*Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period. | |||
==Sandbox for proposed templates== | ==Sandbox for proposed templates== | ||
===Cent ruler=== | ===Cent ruler === | ||
<div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;"> | <div style="height: 100px; width: 100%; background-color: powderblue; font-size: 0;"> | ||
Line 121: | Line 108: | ||
</div> | </div> | ||
===MOS characteristics=== | === MOS characteristics=== | ||
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style=" display: block; | NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.<div style=" display: block; | ||
background-color: #dddddd; | background-color: #dddddd; | ||
Line 208: | Line 195: | ||
|Small 1-diastep | |Small 1-diastep | ||
|s | |s | ||
| 0.0¢ to 171.4¢ | |0.0¢ to 171.4¢ | ||
|s1ms | |s1ms | ||
|- | |- | ||
Line 216: | Line 203: | ||
|L1ms | |L1ms | ||
|- | |- | ||
| rowspan="2" |2-diastep | | rowspan="2" | 2-diastep | ||
|Small 2-diastep | |Small 2-diastep | ||
|L + s | |L + s | ||
Line 223: | Line 210: | ||
|- | |- | ||
|Large 2-diastep | |Large 2-diastep | ||
|2L | | 2L | ||
|342.9¢ to 480.0¢ | |342.9¢ to 480.0¢ | ||
|L2ms | |L2ms | ||
Line 234: | Line 221: | ||
|- | |- | ||
|Large 3-diastep | |Large 3-diastep | ||
|3L | | 3L | ||
|514.3¢ to 720.0¢ | |514.3¢ to 720.0¢ | ||
|L3ms | | L3ms | ||
|- | |- | ||
| rowspan="2" |'''4-diastep''' | | rowspan="2" |'''4-diastep''' | ||
Line 245: | Line 232: | ||
|- | |- | ||
|'''Large 4-diastep''' | |'''Large 4-diastep''' | ||
| 3L + s | |3L + s | ||
|685.7¢ to 720.0¢ | |685.7¢ to 720.0¢ | ||
|L4ms | |L4ms | ||
Line 251: | Line 238: | ||
| rowspan="2" |5-diastep | | rowspan="2" |5-diastep | ||
|Small 5-diastep | |Small 5-diastep | ||
| 3L + 2s | |3L + 2s | ||
|720.0¢ to 857.1¢ | |720.0¢ to 857.1¢ | ||
|s5ms | |s5ms | ||
Line 264: | Line 251: | ||
|4L + 2s | |4L + 2s | ||
|960.0¢ to 1028.6¢ | |960.0¢ to 1028.6¢ | ||
|s6ms | | s6ms | ||
|- | |- | ||
| Large 6-diastep | |Large 6-diastep | ||
|5L + s | |5L + s | ||
|1028.6¢ to 1200.0¢ | |1028.6¢ to 1200.0¢ | ||
Line 274: | Line 261: | ||
|Perfect 7-diastep | |Perfect 7-diastep | ||
|5L + 2s | |5L + 2s | ||
|1200.0¢ | | 1200.0¢ | ||
|P7ms | |P7ms | ||
|} | |} | ||
Line 289: | Line 276: | ||
!Names | !Names | ||
!Bri. | !Bri. | ||
!Rot. | ! Rot. | ||
!0 | !0 | ||
!1 | !1 | ||
Line 306: | Line 293: | ||
|Perf. | |Perf. | ||
|Lg. | |Lg. | ||
| Lg. | |||
|Lg. | |Lg. | ||
|Lg. | |Lg. | ||
|Lg. | |Lg. | ||
|Lg. | |Lg. | ||
| Perf. | |||
|Perf. | |||
|- | |- | ||
|<nowiki>5L 2s 5|1</nowiki> | |<nowiki>5L 2s 5|1</nowiki> | ||
Line 320: | Line 307: | ||
|Perf. | |Perf. | ||
|Lg. | |Lg. | ||
|Lg. | | Lg. | ||
|Sm. | |Sm. | ||
|Lg. | |Lg. | ||
|Lg. | |Lg. | ||
|Lg. | |Lg. | ||
| Perf. | |Perf. | ||
|- | |- | ||
|<nowiki>5L 2s 4|2</nowiki> | |<nowiki>5L 2s 4|2</nowiki> | ||
Line 334: | Line 321: | ||
|Perf. | |Perf. | ||
|Lg. | |Lg. | ||
|Lg. | | Lg. | ||
|Sm. | |Sm. | ||
|Lg. | |Lg. | ||
Line 353: | Line 340: | ||
|Lg. | |Lg. | ||
|Sm. | |Sm. | ||
|Perf. | | Perf. | ||
|- | |- | ||
|<nowiki>5L 2s 2|4</nowiki> | |<nowiki>5L 2s 2|4</nowiki> | ||
Line 362: | Line 349: | ||
|Perf. | |Perf. | ||
|Lg. | |Lg. | ||
|Sm. | | Sm. | ||
|Sm. | |Sm. | ||
|Lg. | |Lg. | ||
|Sm. | |Sm. | ||
|Sm. | |Sm. | ||
| Perf. | |Perf. | ||
|- | |- | ||
|<nowiki>5L 2s 1|5</nowiki> | |<nowiki>5L 2s 1|5</nowiki> | ||
Line 376: | Line 363: | ||
|Perf. | |Perf. | ||
|Sm. | |Sm. | ||
| Sm. | |||
|Sm. | |Sm. | ||
|Lg. | |Lg. | ||
|Sm. | |Sm. | ||
|Sm. | |Sm. | ||
| Perf. | |Perf. | ||
|- | |- | ||
|<nowiki>5L 2s 0|6</nowiki> | |<nowiki>5L 2s 0|6</nowiki> | ||
Line 389: | Line 376: | ||
|sLLsLLL | |sLLsLLL | ||
|Perf. | |Perf. | ||
| Sm. | |||
|Sm. | |Sm. | ||
| Sm. | |||
|Sm. | |Sm. | ||
|Sm. | |Sm. | ||
|Sm. | |Sm. | ||
|Perf. | |Perf. | ||
Line 404: | Line 391: | ||
! rowspan="2" |Visualization | ! rowspan="2" |Visualization | ||
! colspan="4" |Individual steps | ! colspan="4" |Individual steps | ||
! rowspan="2" | Notes | ! rowspan="2" |Notes | ||
|- | |- | ||
!Start | !Start | ||
!Large step | !Large step | ||
!Small step | !Small step | ||
! End | !End | ||
|- | |- | ||
|Small vis | |Small vis | ||
Line 477: | Line 464: | ||
! rowspan="2" |Visualization | ! rowspan="2" |Visualization | ||
! colspan="7" |Individual steps | ! colspan="7" |Individual steps | ||
! rowspan="2" |Notes | ! rowspan="2" | Notes | ||
|- | |- | ||
!Start | !Start | ||
!Size 1 | !Size 1 | ||
!Size 2 | !Size 2 | ||
!Size 3 | ! Size 3 | ||
!Size 4 | !Size 4 | ||
!Size 5 | !Size 5 | ||
Line 622: | Line 609: | ||
</pre> | </pre> | ||
|X's are placeholders for note names. | | X's are placeholders for note names. | ||
Naturals only, as there is not enough room for accidentals. | Naturals only, as there is not enough room for accidentals. | ||
Line 642: | Line 629: | ||
|+3L 4s step sizes | |+3L 4s step sizes | ||
! rowspan="2" |Interval | ! rowspan="2" |Interval | ||
! colspan="2" |Basic 3L 4s | ! colspan="2" | Basic 3L 4s | ||
(10edo, L:s = 2:1) | (10edo, L:s = 2:1) | ||
! colspan="2" |Hard 3L 4s | ! colspan="2" |Hard 3L 4s | ||
Line 658: | Line 645: | ||
|- | |- | ||
|Large step | |Large step | ||
|2 | | 2 | ||
|240¢ | | 240¢ | ||
|3 | |3 | ||
|276.9¢ | | 276.9¢ | ||
|3 | |3 | ||
|211.8¢ | |211.8¢ | ||
Line 667: | Line 654: | ||
|- | |- | ||
|Small step | |Small step | ||
|1 | | 1 | ||
|120¢ | |120¢ | ||
|1 | |1 | ||
| 92.3¢ | |92.3¢ | ||
|2 | |2 | ||
| 141.2¢ | |141.2¢ | ||
| | | | ||
|- | |- | ||
Line 680: | Line 667: | ||
|4 | |4 | ||
|369.2¢ | |369.2¢ | ||
|5 | | 5 | ||
|355.6¢ | |355.6¢ | ||
| | | | ||
Line 711: | Line 698: | ||
|} | |} | ||
==Encoding scheme for module:mos== | == Encoding scheme for module:mos== | ||
=== Mossteps as a vector of L's and s's=== | === Mossteps as a vector of L's and s's=== | ||
Line 769: | Line 713: | ||
! rowspan="2" |Value | ! rowspan="2" |Value | ||
! colspan="2" |Encoded | ! colspan="2" |Encoded | ||
! colspan="4" |Decoded | ! colspan="4" | Decoded | ||
|- | |- | ||
!Intervals with 2 sizes | !Intervals with 2 sizes | ||
Line 802: | Line 746: | ||
|'''Perfect''' | |'''Perfect''' | ||
|- | |- | ||
| | | -1 | ||
|'''Small''' | |'''Small''' | ||
|Perfect minus 1 chroma | |Perfect minus 1 chroma | ||
Line 824: | Line 768: | ||
|3× Diminished | |3× Diminished | ||
|2× Diminished | |2× Diminished | ||
|3× Diminished | | 3× Diminished | ||
|} | |} | ||
Rationale: | Rationale: | ||
* Vectors of L's and s's can always be translated back to the original ''k''-mosstep, no matter how many chromas were added. The "unmodified" vector (the large ''k''-mosstep, or perfect ''k''-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas. | *Vectors of L's and s's can always be translated back to the original ''k''-mosstep, no matter how many chromas were added. The "unmodified" vector (the large ''k''-mosstep, or perfect ''k''-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas. | ||
**Alterations by entire large steps or small steps is considered interval arithmetic. | **Alterations by entire large steps or small steps is considered interval arithmetic. | ||
*Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets. | * Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets. | ||
Examples of encodings for 5L 2s | Examples of encodings for 5L 2s | ||
Line 842: | Line 786: | ||
|- | |- | ||
!Mossteps | !Mossteps | ||
!Chroma | ! Chroma | ||
|- | |- | ||
|0 | |0 | ||
|0 | |0 | ||
| 0 | |||
|Perfect 0-diastep | |Perfect 0-diastep | ||
|F | | F | ||
|- | |- | ||
| s | |s | ||
|1 | |1 | ||
| -1 | | -1 | ||
|Minor 1-diastep | |Minor 1-diastep | ||
|Gb | |Gb | ||
|- | |- | ||
|L | | L | ||
|1 | |1 | ||
|0 | |0 | ||
Line 877: | Line 821: | ||
|3 | |3 | ||
| -1 | | -1 | ||
|Perfect 3-diastep | | Perfect 3-diastep | ||
|Bb | |Bb | ||
|- | |- | ||
Line 887: | Line 831: | ||
|- | |- | ||
|2L + 2s | |2L + 2s | ||
| 4 | |4 | ||
| -1 | | -1 | ||
|Diminished 4-diastep | |Diminished 4-diastep | ||
Line 898: | Line 842: | ||
|C | |C | ||
|- | |- | ||
|3L + 2s | | 3L + 2s | ||
|5 | |5 | ||
| -1 | | -1 | ||
Line 918: | Line 862: | ||
|5L + s | |5L + s | ||
|6 | |6 | ||
| 0 | |0 | ||
|Major 6-diastep | | Major 6-diastep | ||
|E | |E | ||
|- | |- | ||
Line 944: | Line 888: | ||
!4 | !4 | ||
!5 | !5 | ||
!6 | ! 6 | ||
!7 | !7 | ||
|- | |- | ||
Line 953: | Line 897: | ||
|LLLsLLs | |LLLsLLs | ||
|0 | |0 | ||
| 0 | |0 | ||
| 0 | |0 | ||
|0 | |0 | ||
|0 | |0 | ||
Line 967: | Line 911: | ||
|LLsLLLs | |LLsLLLs | ||
|0 | |0 | ||
| 0 | |0 | ||
| 0 | |0 | ||
| -1 | | -1 | ||
|0 | |0 | ||
Line 981: | Line 925: | ||
|LLsLLsL | |LLsLLsL | ||
|0 | |0 | ||
| 0 | |0 | ||
| 1 | |1 | ||
| -1 | | -1 | ||
|0 | |0 | ||
Line 993: | Line 937: | ||
|4 | |4 | ||
|6 | |6 | ||
| LsLLLsL | |LsLLLsL | ||
|0 | |0 | ||
|0 | |0 | ||
Line 1,012: | Line 956: | ||
| -1 | | -1 | ||
| -1 | | -1 | ||
| 0 | |0 | ||
| -1 | | -1 | ||
| -1 | | -1 | ||
Line 1,018: | Line 962: | ||
|- | |- | ||
|<nowiki>5L 2s 1|5</nowiki> | |<nowiki>5L 2s 1|5</nowiki> | ||
| Phrygian | |Phrygian | ||
| 6 | |6 | ||
|7 | |7 | ||
|sLLLsLL | |sLLLsLL | ||
Line 1,033: | Line 977: | ||
|<nowiki>5L 2s 0|6</nowiki> | |<nowiki>5L 2s 0|6</nowiki> | ||
|Locrian | |Locrian | ||
|7 | | 7 | ||
|4 | |4 | ||
|sLLsLLL | |sLLsLLL |
Latest revision as of 02:34, 18 March 2025
This is a sandbox page for me (Ganaram) to test out a few things before deploying things. (Expect some mess.)
{{subst:User:Ganaram inukshuk/JI ratios|Int Limit=50|Prime Limit=7|Equave=2/1}}
produces
1/1, 50/49, 49/48, 36/35, 28/27, 25/24, 21/20, 16/15, 15/14, 27/25, 49/45, 35/32, 10/9, 28/25, 9/8, 8/7, 7/6, 32/27, 25/21, 6/5, 49/40, 5/4, 32/25, 9/7, 35/27, 21/16, 4/3, 27/20, 49/36, 48/35, 25/18, 7/5, 45/32, 10/7, 36/25, 35/24, 40/27, 3/2, 32/21, 49/32, 14/9, 25/16, 8/5, 45/28, 49/30, 5/3, 42/25, 27/16, 12/7, 7/4, 16/9, 25/14, 9/5, 49/27, 50/27, 28/15, 15/8, 40/21, 48/25, 27/14, 35/18, 49/25, 2/1
MOS scalesig
Neutral 3rd | Major 3rd | Perfect 4th |
MOS tuning spectrum (AKA, scale tree)
Generator(edo) | Cents | Step ratio | Comments(always proper) | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | ||||||||||||||
1\2 | 600.000 | 600.000 | 1:1 | 1.000 | Equalized 1L 1s | ||||||||||||
13\25 | 624.000 | 576.000 | 13:12 | 1.083 | |||||||||||||
12\23 | 626.087 | 573.913 | 12:11 | 1.091 | |||||||||||||
11\21 | 628.571 | 571.429 | 11:10 | 1.100 | |||||||||||||
10\19 | 631.579 | 568.421 | 10:9 | 1.111 | |||||||||||||
9\17 | 635.294 | 564.706 | 9:8 | 1.125 | |||||||||||||
8\15 | 640.000 | 560.000 | 8:7 | 1.143 | |||||||||||||
7\13 | 646.154 | 553.846 | 7:6 | 1.167 | |||||||||||||
13\24 | 650.000 | 550.000 | 13:11 | 1.182 | |||||||||||||
6\11 | 654.545 | 545.455 | 6:5 | 1.200 | |||||||||||||
11\20 | 660.000 | 540.000 | 11:9 | 1.222 | |||||||||||||
5\9 | 666.667 | 533.333 | 5:4 | 1.250 | |||||||||||||
9\16 | 675.000 | 525.000 | 9:7 | 1.286 | |||||||||||||
13\23 | 678.261 | 521.739 | 13:10 | 1.300 | |||||||||||||
4\7 | 685.714 | 514.286 | 4:3 | 1.333 | Supersoft 1L 1s | ||||||||||||
11\19 | 694.737 | 505.263 | 11:8 | 1.375 | |||||||||||||
7\12 | 700.000 | 500.000 | 7:5 | 1.400 | |||||||||||||
10\17 | 705.882 | 494.118 | 10:7 | 1.429 | |||||||||||||
13\22 | 709.091 | 490.909 | 13:9 | 1.444 | |||||||||||||
3\5 | 720.000 | 480.000 | 3:2 | 1.500 | Soft 1L 1s | ||||||||||||
11\18 | 733.333 | 466.667 | 11:7 | 1.571 | |||||||||||||
8\13 | 738.462 | 461.538 | 8:5 | 1.600 | |||||||||||||
13\21 | 742.857 | 457.143 | 13:8 | 1.625 | |||||||||||||
5\8 | 750.000 | 450.000 | 5:3 | 1.667 | Semisoft 1L 1s | ||||||||||||
12\19 | 757.895 | 442.105 | 12:7 | 1.714 | |||||||||||||
7\11 | 763.636 | 436.364 | 7:4 | 1.750 | |||||||||||||
9\14 | 771.429 | 428.571 | 9:5 | 1.800 | |||||||||||||
11\17 | 776.471 | 423.529 | 11:6 | 1.833 | |||||||||||||
13\20 | 780.000 | 420.000 | 13:7 | 1.857 | |||||||||||||
2\3 | 800.000 | 400.000 | 2:1 | 2.000 | Basic 1L 1s | ||||||||||||
13\19 | 821.053 | 378.947 | 13:6 | 2.167 | |||||||||||||
11\16 | 825.000 | 375.000 | 11:5 | 2.200 | |||||||||||||
9\13 | 830.769 | 369.231 | 9:4 | 2.250 | |||||||||||||
7\10 | 840.000 | 360.000 | 7:3 | 2.333 | |||||||||||||
12\17 | 847.059 | 352.941 | 12:5 | 2.400 | |||||||||||||
5\7 | 857.143 | 342.857 | 5:2 | 2.500 | Semihard 1L 1s | ||||||||||||
13\18 | 866.667 | 333.333 | 13:5 | 2.600 | |||||||||||||
8\11 | 872.727 | 327.273 | 8:3 | 2.667 | |||||||||||||
11\15 | 880.000 | 320.000 | 11:4 | 2.750 | |||||||||||||
3\4 | 900.000 | 300.000 | 3:1 | 3.000 | Hard 1L 1s | ||||||||||||
13\17 | 917.647 | 282.353 | 13:4 | 3.250 | |||||||||||||
10\13 | 923.077 | 276.923 | 10:3 | 3.333 | |||||||||||||
7\9 | 933.333 | 266.667 | 7:2 | 3.500 | |||||||||||||
11\14 | 942.857 | 257.143 | 11:3 | 3.667 | |||||||||||||
4\5 | 960.000 | 240.000 | 4:1 | 4.000 | Superhard 1L 1s | ||||||||||||
13\16 | 975.000 | 225.000 | 13:3 | 4.333 | |||||||||||||
9\11 | 981.818 | 218.182 | 9:2 | 4.500 | |||||||||||||
5\6 | 1000.000 | 200.000 | 5:1 | 5.000 | |||||||||||||
11\13 | 1015.385 | 184.615 | 11:2 | 5.500 | |||||||||||||
6\7 | 1028.571 | 171.429 | 6:1 | 6.000 | |||||||||||||
13\15 | 1040.000 | 160.000 | 13:2 | 6.500 | |||||||||||||
7\8 | 1050.000 | 150.000 | 7:1 | 7.000 | |||||||||||||
8\9 | 1066.667 | 133.333 | 8:1 | 8.000 | |||||||||||||
9\10 | 1080.000 | 120.000 | 9:1 | 9.000 | |||||||||||||
10\11 | 1090.909 | 109.091 | 10:1 | 10.000 | |||||||||||||
11\12 | 1100.000 | 100.000 | 11:1 | 11.000 | |||||||||||||
12\13 | 1107.692 | 92.308 | 12:1 | 12.000 | |||||||||||||
13\14 | 1114.286 | 85.714 | 13:1 | 13.000 | |||||||||||||
1\1 | 1200.000 | 0.000 | 1:0 | → ∞ | Collapsed 1L 1s |
Generator(edo) | Cents | Step ratio | Comments | |||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||||||||||||||||
2\7 | 342.857 | 857.143 | 1:1 | 1.000 | Equalized 3L 4s | |||||||||||||||||||
39\136 | 344.118 | 855.882 | 20:19 | 1.053 | ||||||||||||||||||||
37\129 | 344.186 | 855.814 | 19:18 | 1.056 | ||||||||||||||||||||
35\122 | 344.262 | 855.738 | 18:17 | 1.059 | ||||||||||||||||||||
33\115 | 344.348 | 855.652 | 17:16 | 1.062 | ||||||||||||||||||||
31\108 | 344.444 | 855.556 | 16:15 | 1.067 | ||||||||||||||||||||
29\101 | 344.554 | 855.446 | 15:14 | 1.071 | ||||||||||||||||||||
27\94 | 344.681 | 855.319 | 14:13 | 1.077 | ||||||||||||||||||||
25\87 | 344.828 | 855.172 | 13:12 | 1.083 | ||||||||||||||||||||
23\80 | 345.000 | 855.000 | 12:11 | 1.091 | ||||||||||||||||||||
21\73 | 345.205 | 854.795 | 11:10 | 1.100 | ||||||||||||||||||||
19\66 | 345.455 | 854.545 | 10:9 | 1.111 | ||||||||||||||||||||
36\125 | 345.600 | 854.400 | 19:17 | 1.118 | ||||||||||||||||||||
17\59 | 345.763 | 854.237 | 9:8 | 1.125 | ||||||||||||||||||||
32\111 | 345.946 | 854.054 | 17:15 | 1.133 | ||||||||||||||||||||
15\52 | 346.154 | 853.846 | 8:7 | 1.143 | ||||||||||||||||||||
28\97 | 346.392 | 853.608 | 15:13 | 1.154 | ||||||||||||||||||||
13\45 | 346.667 | 853.333 | 7:6 | 1.167 | ||||||||||||||||||||
37\128 | 346.875 | 853.125 | 20:17 | 1.176 | ||||||||||||||||||||
24\83 | 346.988 | 853.012 | 13:11 | 1.182 | ||||||||||||||||||||
35\121 | 347.107 | 852.893 | 19:16 | 1.188 | ||||||||||||||||||||
11\38 | 347.368 | 852.632 | 6:5 | 1.200 | Mohaha / ptolemy↑ | |||||||||||||||||||
31\107 | 347.664 | 852.336 | 17:14 | 1.214 | ||||||||||||||||||||
20\69 | 347.826 | 852.174 | 11:9 | 1.222 | ||||||||||||||||||||
29\100 | 348.000 | 852.000 | 16:13 | 1.231 | ||||||||||||||||||||
9\31 | 348.387 | 851.613 | 5:4 | 1.250 | Mohaha / migration / mohajira | |||||||||||||||||||
34\117 | 348.718 | 851.282 | 19:15 | 1.267 | ||||||||||||||||||||
25\86 | 348.837 | 851.163 | 14:11 | 1.273 | ||||||||||||||||||||
16\55 | 349.091 | 850.909 | 9:7 | 1.286 | ||||||||||||||||||||
23\79 | 349.367 | 850.633 | 13:10 | 1.300 | ||||||||||||||||||||
30\103 | 349.515 | 850.485 | 17:13 | 1.308 | ||||||||||||||||||||
7\24 | 350.000 | 850.000 | 4:3 | 1.333 | Supersoft 3L 4s | |||||||||||||||||||
33\113 | 350.442 | 849.558 | 19:14 | 1.357 | ||||||||||||||||||||
26\89 | 350.562 | 849.438 | 15:11 | 1.364 | ||||||||||||||||||||
19\65 | 350.769 | 849.231 | 11:8 | 1.375 | Mohaha / mohamaq | |||||||||||||||||||
31\106 | 350.943 | 849.057 | 18:13 | 1.385 | ||||||||||||||||||||
12\41 | 351.220 | 848.780 | 7:5 | 1.400 | Mohaha / neutrominant | |||||||||||||||||||
29\99 | 351.515 | 848.485 | 17:12 | 1.417 | ||||||||||||||||||||
17\58 | 351.724 | 848.276 | 10:7 | 1.429 | Hemif / hemififths | |||||||||||||||||||
22\75 | 352.000 | 848.000 | 13:9 | 1.444 | ||||||||||||||||||||
27\92 | 352.174 | 847.826 | 16:11 | 1.455 | ||||||||||||||||||||
32\109 | 352.294 | 847.706 | 19:13 | 1.462 | ||||||||||||||||||||
5\17 | 352.941 | 847.059 | 3:2 | 1.500 | Soft 3L 4s | |||||||||||||||||||
33\112 | 353.571 | 846.429 | 20:13 | 1.538 | ||||||||||||||||||||
28\95 | 353.684 | 846.316 | 17:11 | 1.545 | ||||||||||||||||||||
23\78 | 353.846 | 846.154 | 14:9 | 1.556 | ||||||||||||||||||||
18\61 | 354.098 | 845.902 | 11:7 | 1.571 | Suhajira | |||||||||||||||||||
31\105 | 354.286 | 845.714 | 19:12 | 1.583 | ||||||||||||||||||||
13\44 | 354.545 | 845.455 | 8:5 | 1.600 | ||||||||||||||||||||
21\71 | 354.930 | 845.070 | 13:8 | 1.625 | Golden suhajira (354.8232¢) | |||||||||||||||||||
29\98 | 355.102 | 844.898 | 18:11 | 1.636 | ||||||||||||||||||||
8\27 | 355.556 | 844.444 | 5:3 | 1.667 | Semisoft 3L 4s Suhajira / ringo | |||||||||||||||||||
27\91 | 356.044 | 843.956 | 17:10 | 1.700 | ||||||||||||||||||||
19\64 | 356.250 | 843.750 | 12:7 | 1.714 | Beatles | |||||||||||||||||||
30\101 | 356.436 | 843.564 | 19:11 | 1.727 | ||||||||||||||||||||
11\37 | 356.757 | 843.243 | 7:4 | 1.750 | ||||||||||||||||||||
25\84 | 357.143 | 842.857 | 16:9 | 1.778 | ||||||||||||||||||||
14\47 | 357.447 | 842.553 | 9:5 | 1.800 | ||||||||||||||||||||
31\104 | 357.692 | 842.308 | 20:11 | 1.818 | ||||||||||||||||||||
17\57 | 357.895 | 842.105 | 11:6 | 1.833 | ||||||||||||||||||||
20\67 | 358.209 | 841.791 | 13:7 | 1.857 | ||||||||||||||||||||
23\77 | 358.442 | 841.558 | 15:8 | 1.875 | ||||||||||||||||||||
26\87 | 358.621 | 841.379 | 17:9 | 1.889 | ||||||||||||||||||||
29\97 | 358.763 | 841.237 | 19:10 | 1.900 | ||||||||||||||||||||
3\10 | 360.000 | 840.000 | 2:1 | 2.000 | Basic 3L 4s Scales with tunings softer than this are proper | |||||||||||||||||||
28\93 | 361.290 | 838.710 | 19:9 | 2.111 | ||||||||||||||||||||
25\83 | 361.446 | 838.554 | 17:8 | 2.125 | ||||||||||||||||||||
22\73 | 361.644 | 838.356 | 15:7 | 2.143 | ||||||||||||||||||||
19\63 | 361.905 | 838.095 | 13:6 | 2.167 | ||||||||||||||||||||
16\53 | 362.264 | 837.736 | 11:5 | 2.200 | ||||||||||||||||||||
29\96 | 362.500 | 837.500 | 20:9 | 2.222 | ||||||||||||||||||||
13\43 | 362.791 | 837.209 | 9:4 | 2.250 | ||||||||||||||||||||
23\76 | 363.158 | 836.842 | 16:7 | 2.286 | ||||||||||||||||||||
10\33 | 363.636 | 836.364 | 7:3 | 2.333 | ||||||||||||||||||||
27\89 | 364.045 | 835.955 | 19:8 | 2.375 | ||||||||||||||||||||
17\56 | 364.286 | 835.714 | 12:5 | 2.400 | ||||||||||||||||||||
24\79 | 364.557 | 835.443 | 17:7 | 2.429 | ||||||||||||||||||||
7\23 | 365.217 | 834.783 | 5:2 | 2.500 | Semihard 3L 4s | |||||||||||||||||||
25\82 | 365.854 | 834.146 | 18:7 | 2.571 | ||||||||||||||||||||
18\59 | 366.102 | 833.898 | 13:5 | 2.600 | Unnamed golden tuning (366.2564¢) | |||||||||||||||||||
11\36 | 366.667 | 833.333 | 8:3 | 2.667 | ||||||||||||||||||||
26\85 | 367.059 | 832.941 | 19:7 | 2.714 | ||||||||||||||||||||
15\49 | 367.347 | 832.653 | 11:4 | 2.750 | ||||||||||||||||||||
19\62 | 367.742 | 832.258 | 14:5 | 2.800 | ||||||||||||||||||||
23\75 | 368.000 | 832.000 | 17:6 | 2.833 | ||||||||||||||||||||
27\88 | 368.182 | 831.818 | 20:7 | 2.857 | ||||||||||||||||||||
4\13 | 369.231 | 830.769 | 3:1 | 3.000 | Hard 3L 4s | |||||||||||||||||||
25\81 | 370.370 | 829.630 | 19:6 | 3.167 | ||||||||||||||||||||
21\68 | 370.588 | 829.412 | 16:5 | 3.200 | ||||||||||||||||||||
17\55 | 370.909 | 829.091 | 13:4 | 3.250 | ||||||||||||||||||||
13\42 | 371.429 | 828.571 | 10:3 | 3.333 | ||||||||||||||||||||
22\71 | 371.831 | 828.169 | 17:5 | 3.400 | ||||||||||||||||||||
9\29 | 372.414 | 827.586 | 7:2 | 3.500 | Sephiroth | |||||||||||||||||||
23\74 | 372.973 | 827.027 | 18:5 | 3.600 | ||||||||||||||||||||
14\45 | 373.333 | 826.667 | 11:3 | 3.667 | ||||||||||||||||||||
19\61 | 373.770 | 826.230 | 15:4 | 3.750 | ||||||||||||||||||||
24\77 | 374.026 | 825.974 | 19:5 | 3.800 | ||||||||||||||||||||
5\16 | 375.000 | 825.000 | 4:1 | 4.000 | Superhard 3L 4s | |||||||||||||||||||
21\67 | 376.119 | 823.881 | 17:4 | 4.250 | ||||||||||||||||||||
16\51 | 376.471 | 823.529 | 13:3 | 4.333 | ||||||||||||||||||||
11\35 | 377.143 | 822.857 | 9:2 | 4.500 | Muggles | |||||||||||||||||||
17\54 | 377.778 | 822.222 | 14:3 | 4.667 | ||||||||||||||||||||
23\73 | 378.082 | 821.918 | 19:4 | 4.750 | ||||||||||||||||||||
6\19 | 378.947 | 821.053 | 5:1 | 5.000 | Magic | |||||||||||||||||||
19\60 | 380.000 | 820.000 | 16:3 | 5.333 | ||||||||||||||||||||
13\41 | 380.488 | 819.512 | 11:2 | 5.500 | ||||||||||||||||||||
20\63 | 380.952 | 819.048 | 17:3 | 5.667 | ||||||||||||||||||||
7\22 | 381.818 | 818.182 | 6:1 | 6.000 | Würschmidt↓ | |||||||||||||||||||
22\69 | 382.609 | 817.391 | 19:3 | 6.333 | ||||||||||||||||||||
15\47 | 382.979 | 817.021 | 13:2 | 6.500 | ||||||||||||||||||||
23\72 | 383.333 | 816.667 | 20:3 | 6.667 | ||||||||||||||||||||
8\25 | 384.000 | 816.000 | 7:1 | 7.000 | ||||||||||||||||||||
17\53 | 384.906 | 815.094 | 15:2 | 7.500 | ||||||||||||||||||||
9\28 | 385.714 | 814.286 | 8:1 | 8.000 | ||||||||||||||||||||
19\59 | 386.441 | 813.559 | 17:2 | 8.500 | ||||||||||||||||||||
10\31 | 387.097 | 812.903 | 9:1 | 9.000 | ||||||||||||||||||||
21\65 | 387.692 | 812.308 | 19:2 | 9.500 | ||||||||||||||||||||
11\34 | 388.235 | 811.765 | 10:1 | 10.000 | ||||||||||||||||||||
12\37 | 389.189 | 810.811 | 11:1 | 11.000 | ||||||||||||||||||||
13\40 | 390.000 | 810.000 | 12:1 | 12.000 | ||||||||||||||||||||
14\43 | 390.698 | 809.302 | 13:1 | 13.000 | ||||||||||||||||||||
15\46 | 391.304 | 808.696 | 14:1 | 14.000 | ||||||||||||||||||||
16\49 | 391.837 | 808.163 | 15:1 | 15.000 | ||||||||||||||||||||
17\52 | 392.308 | 807.692 | 16:1 | 16.000 | ||||||||||||||||||||
18\55 | 392.727 | 807.273 | 17:1 | 17.000 | ||||||||||||||||||||
19\58 | 393.103 | 806.897 | 18:1 | 18.000 | ||||||||||||||||||||
20\61 | 393.443 | 806.557 | 19:1 | 19.000 | ||||||||||||||||||||
21\64 | 393.750 | 806.250 | 20:1 | 20.000 | ||||||||||||||||||||
1\3 | 400.000 | 800.000 | 1:0 | → ∞ | Collapsed 3L 4s |
Generator(edf) | Cents | Step ratio | Comments | |||||
---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||
2\7 | 200.559 | 501.396 | 1:1 | 1.000 | Equalized 3L 4s⟨3/2⟩ | |||
7\24 | 204.737 | 497.218 | 4:3 | 1.333 | Supersoft 3L 4s⟨3/2⟩ | |||
5\17 | 206.457 | 495.498 | 3:2 | 1.500 | Soft 3L 4s⟨3/2⟩ | |||
8\27 | 207.987 | 493.968 | 5:3 | 1.667 | Semisoft 3L 4s⟨3/2⟩ | |||
3\10 | 210.587 | 491.369 | 2:1 | 2.000 | Basic 3L 4s⟨3/2⟩ Scales with tunings softer than this are proper | |||
7\23 | 213.638 | 488.317 | 5:2 | 2.500 | Semihard 3L 4s⟨3/2⟩ | |||
4\13 | 215.986 | 485.969 | 3:1 | 3.000 | Hard 3L 4s⟨3/2⟩ | |||
5\16 | 219.361 | 482.594 | 4:1 | 4.000 | Superhard 3L 4s⟨3/2⟩ | |||
1\3 | 233.985 | 467.970 | 1:0 | → ∞ | Collapsed 3L 4s⟨3/2⟩ |
MOS intro
First sentence:
- Single-period 2/1-equivalent: xL ys (TAMNAMS name tamnams-name), also called other-name, is an octave-repeating moment of symmetry scale that divides the octave (2/1) into x large and y small steps.
- Multi-period 2/1-equivalent: nxL nys (TAMNAMS name tamnams-name), also called other-name, is an octave-repeating moment of symmetry scale that divides the octave (2/1) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
- Single-period 3/1-equivalent: 3/1-equivalent xL ys, also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, c cents) into x large and y small steps.
- Multi-period 3/1-equivalent: 3/1-equivalent nxL nys, also called other-name, is a twelfth-repeating moment of symmetry scale that divides the tritave or perfect 12th (3/1, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
- Single-period 3/2-equivalent: 3/2-equivalent xL ys, also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, c cents) into x large and y small steps.
- Multi-period 3/2-equivalent: 3/2-equivalent nxL nys, also called other-name, is a fifth-repeating moment of symmetry scale that divides the perfect 5th (3/2, nc cents) into nx large steps and ny small steps, with n periods of c cents containing x large and y small steps each.
Second sentence:
- Generators that produce this scale range from g1 cents to g2 cents, or from d1 cents to d2 cents.
Octave-equivalent relational info:
- Parents of mosses with 6-10 steps: xL ys is the parent scale of both child-soft and child-hard.
- Children of mosses with 6-10 steps: xL ys expands parent-scale by adding step-count-difference tones.
Rothenprop:
- Single-period: Scales of this form are always proper because there is only one small step.
- Multi-period: Scales of this form, where every period is the same, are proper because there is only one small step per period.
Sandbox for proposed templates
Cent ruler
MOS characteristics
NOTE: not suitable for displaying intervals or scale degrees. Repurpose for other content.
UDP | Cyclic order |
Step pattern |
Scale degree (diadegree) | |||||||
---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |||
6|0 | 1 | LLLsLLs | Perf. | Maj. | Maj. | Aug. | Perf. | Maj. | Maj. | Perf. |
5|1 | 5 | LLsLLLs | Perf. | Maj. | Maj. | Perf. | Perf. | Maj. | Maj. | Perf. |
4|2 | 2 | LLsLLsL | Perf. | Maj. | Maj. | Perf. | Perf. | Maj. | Min. | Perf. |
3|3 | 6 | LsLLLsL | Perf. | Maj. | Min. | Perf. | Perf. | Maj. | Min. | Perf. |
2|4 | 3 | LsLLsLL | Perf. | Maj. | Min. | Perf. | Perf. | Min. | Min. | Perf. |
1|5 | 7 | sLLLsLL | Perf. | Min. | Min. | Perf. | Perf. | Min. | Min. | Perf. |
0|6 | 4 | sLLsLLL | Perf. | Min. | Min. | Perf. | Dim. | Min. | Min. | Perf. |
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-diastep | Perfect 0-diastep | P0dias | 0 | 0.0 ¢ |
1-diastep | Minor 1-diastep | m1dias | s | 0.0 ¢ to 171.4 ¢ |
Major 1-diastep | M1dias | L | 171.4 ¢ to 240.0 ¢ | |
2-diastep | Minor 2-diastep | m2dias | L + s | 240.0 ¢ to 342.9 ¢ |
Major 2-diastep | M2dias | 2L | 342.9 ¢ to 480.0 ¢ | |
3-diastep | Perfect 3-diastep | P3dias | 2L + s | 480.0 ¢ to 514.3 ¢ |
Augmented 3-diastep | A3dias | 3L | 514.3 ¢ to 720.0 ¢ | |
4-diastep | Diminished 4-diastep | d4dias | 2L + 2s | 480.0 ¢ to 685.7 ¢ |
Perfect 4-diastep | P4dias | 3L + s | 685.7 ¢ to 720.0 ¢ | |
5-diastep | Minor 5-diastep | m5dias | 3L + 2s | 720.0 ¢ to 857.1 ¢ |
Major 5-diastep | M5dias | 4L + s | 857.1 ¢ to 960.0 ¢ | |
6-diastep | Minor 6-diastep | m6dias | 4L + 2s | 960.0 ¢ to 1028.6 ¢ |
Major 6-diastep | M6dias | 5L + s | 1028.6 ¢ to 1200.0 ¢ | |
7-diastep | Perfect 7-diastep | P7dias | 5L + 2s | 1200.0 ¢ |
MOS intervals (using large/small instead of MmAPd)
Interval | Size(s) | Steps | Range in cents | Abbrev. |
---|---|---|---|---|
0-diastep (root) | Perfect 0-diastep | 0 | 0.0¢ | P0ms |
1-diastep | Small 1-diastep | s | 0.0¢ to 171.4¢ | s1ms |
Large 1-diastep | L | 171.4¢ to 240.0¢ | L1ms | |
2-diastep | Small 2-diastep | L + s | 240.0¢ to 342.9¢ | s2ms |
Large 2-diastep | 2L | 342.9¢ to 480.0¢ | L2ms | |
3-diastep | Small 3-diastep | 2L + s | 480.0¢ to 514.3¢ | s3ms |
Large 3-diastep | 3L | 514.3¢ to 720.0¢ | L3ms | |
4-diastep | Small 4-diastep | 2L + 2s | 480.0¢ to 685.7¢ | s4ms |
Large 4-diastep | 3L + s | 685.7¢ to 720.0¢ | L4ms | |
5-diastep | Small 5-diastep | 3L + 2s | 720.0¢ to 857.1¢ | s5ms |
Large 5-diastep | 4L + s | 857.1¢ to 960.0¢ | L5ms | |
6-diastep | Small 6-diastep | 4L + 2s | 960.0¢ to 1028.6¢ | s6ms |
Large 6-diastep | 5L + s | 1028.6¢ to 1200.0¢ | L6ms | |
7-diastep (octave) | Perfect 7-diastep | 5L + 2s | 1200.0¢ | P7ms |
MOS mode degrees (using large/small instead of MmAPd)
Mode names | Ordering | Step pattern | Scale degree | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Default | Names | Bri. | Rot. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5L 2s 6|0 | Lydian | 1 | 1 | LLLsLLs | Perf. | Lg. | Lg. | Lg. | Lg. | Lg. | Lg. | Perf. |
5L 2s 5|1 | Ionian (major) | 2 | 5 | LLsLLLs | Perf. | Lg. | Lg. | Sm. | Lg. | Lg. | Lg. | Perf. |
5L 2s 4|2 | Mixolydian | 3 | 2 | LLsLLsL | Perf. | Lg. | Lg. | Sm. | Lg. | Lg. | Sm. | Perf. |
5L 2s 3|3 | Dorian | 4 | 6 | LsLLLsL | Perf. | Lg. | Sm. | Sm. | Lg. | Lg. | Sm. | Perf. |
5L 2s 2|4 | Aeolian (minor) | 5 | 3 | LsLLsLL | Perf. | Lg. | Sm. | Sm. | Lg. | Sm. | Sm. | Perf. |
5L 2s 1|5 | Phrygian | 6 | 7 | sLLLsLL | Perf. | Sm. | Sm. | Sm. | Lg. | Sm. | Sm. | Perf. |
5L 2s 0|6 | Locrian | 7 | 4 | sLLsLLL | Perf. | Sm. | Sm. | Sm. | Sm. | Sm. | Sm. | Perf. |
KB vis
Type | Visualization | Individual steps | Notes | |||
---|---|---|---|---|---|---|
Start | Large step | Small step | End | |||
Small vis | ┌╥╥╥┬╥╥┬┐ │║║║│║║││ │││││││││ └┴┴┴┴┴┴┴┘ |
┌ │ │ └ |
╥ ║ │ ┴ |
┬ │ │ ┴ |
┐ │ │ ┘ |
Not enough room for note names. |
Large vis | ┌──┬─┬─┬─┬─┬─┬──┬──┬─┬─┬─┬──┬───┐ │░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│ │░░│▒│░│▒│░│▒│░░│░░│▒│░│▒│░░│░░░│ │░░└┬┘░└┬┘░└┬┘░░│░░└┬┘░└┬┘░░│░░░│ │░░░│░░░│░░░│░░░│░░░│░░░│░░░│░░░│ │░█░│░░░│░░░│░░░│░░░│░░░│░░░│░█░│ └───┴───┴───┴───┴───┴───┴───┴───┘ |
┌── │ │ │ │ │ X └── |
┬─┬─ │ │ │ │ └┬┘ │ │ X ─┴── |
─┬── │ │ │ │ │ X ─┴── |
─┐ │ │ │ │ │ ─┘ |
Black squares indicate notes one equave apart.
Contains shading characters, meant for spacing. |
Type | Visualization | Individual steps | Notes | ||||||
---|---|---|---|---|---|---|---|---|---|
Start | Size 1 | Size 2 | Size 3 | Size 4 | Size 5 | End | |||
Multisize vis (large) | ┌────┬───┬──┬───┬──┬─┬─┬────┬────┬─┬─┬──┬─┬─┬────┬──────┐ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░├─┼─┤░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒│▒│░░░░│░░░░│▒│▒│░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░├───┤░░├─┴─┤░░░░│░░░░├─┼─┤░░│▒│▒│░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░├─┴─┤░░░░│░░░░░░│ │░░░░│▒▒▒│░░│▒▒▒│░░│▒▒▒│░░░░│░░░░│▒│▒│░░│▒▒▒│░░░░│░░░░░░│ │░░░░└─┬─┘░░└─┬─┘░░└─┬─┘░░░░│░░░░└─┼─┘░░└─┬─┘░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ │░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│░░░░░░│ └──────┴──────┴──────┴──────┴──────┴──────┴──────┴──────┘ |
┌──── │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ │░░░░ └──── |
────┬── ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ░░░░│░░ ────┴── |
┬───┬── │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬───┬── │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ ├───┤░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬─┬─┬── │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ ├─┴─┤░░ │▓▓▓│░░ │▓▓▓│░░ │▓▓▓│░░ └─┬─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
┬─┬─┬── │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ ├─┼─┤░░ │▓│▓│░░ │▓│▓│░░ │▓│▓│░░ └─┼─┘░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ░░│░░░░ ──┴──── |
──┐ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ░░│ ──┘ |
X's are placeholders for note names.
Naturals only, as there is not enough room for accidentals. May not display correctly on some devices. Testing with unintrusive filler characters |
TAMNAMS use
This article assumes TAMNAMS conventions for naming scale degrees, intervals, and step ratios.
Names for the scale degrees of xL ys, the position of the scales tones, are called mosdegrees, or prefixdegrees. Its intervals, the pitch difference between any two tones, are based on the number of large and small steps between them and are called mossteps, or prefixsteps. Both mosdegrees and mossteps use 0-indexed numbering, as opposed to using 1-indexed ordinals, such as mos-1st instead of 0-mosstep. The use of 1-indexed ordinal names is discouraged for nondiatonic MOS scales.
JI ratio intro
For general ratios: m/n, also called interval-name, is a p-limit just intonation ratio of exactly/about r¢.
For harmonics: m/1, also called interval-name, is a just intonation ration that represents the mth harmonic of exactly/about r¢.
MOS step sizes
Interval | Basic 3L 4s
(10edo, L:s = 2:1) |
Hard 3L 4s
(13edo, L:s = 3:1) |
Soft 3L 4s
(17edo, L:s = 3:2) |
Approx. JI ratios | |||
---|---|---|---|---|---|---|---|
Steps | Cents | Steps | Cents | Steps | Cents | ||
Large step | 2 | 240¢ | 3 | 276.9¢ | 3 | 211.8¢ | Hide column if no ratios given |
Small step | 1 | 120¢ | 1 | 92.3¢ | 2 | 141.2¢ | |
Bright generator | 3 | 360¢ | 4 | 369.2¢ | 5 | 355.6¢ |
Notes:
- Allow option to show the bright generator, dark generator, or no generator.
- JI ratios column only shows if there are any ratios to show
Mos ancestors and descendants
2nd ancestor | 1st ancestor | Mos | 1st descendants | 2nd descendants |
---|---|---|---|---|
uL vs | zL ws | xL ys | xL (x+y)s | xL (2x+y)s |
(2x+y)L xs | ||||
(x+y)L xs | (2x+y)L (x+y)s | |||
(x+y)L (2x+y)s |
Encoding scheme for module:mos
Mossteps as a vector of L's and s's
For an arbitrary step sequence consisting of L's and s's, the sum of the quantities of L's and s's denotes what mosstep it is. EG, "LLLsL" is a 5-mosstep since it has 5 L's and s's total. This can be expressed as a vector denoting how many L's and s's there are. EG, "LLLsL" becomes { 4, 1 }, denoting 4 large steps and 1 small step.
Alterations by adding a chroma always adds one L and subtracts one s (or subtracts one L and adds one s, if lowering by a chroma), so the sum of L's and s's, even if one of the quantities is negative, will always denote what k-mosstep that interval is. EG, raising "LLLsL" by a chroma produces the vector { 5, 0 }, and raising it by another chroma produces the vector { 6, -1 }.
Through this, the "original size" of the interval can always be deduced.
EG, the vector { 6, -2 } is given, assuming a mos of 5L 2s. Adding 6 and -2 shows that the interval is a 4-mosstep. Taking the brightest mode of 5L 2s (LLLsLLs) and truncating it to the first 4 steps (LLLs), the corresponding vector is { 3, 1 }. This is the vector to compare to. Subtracting the given vector from the comparison vector ( as { 6-3, -2-1 }) produces the vector { 3, -3 }, meaning that { 6, -2 } is the large 4-mosstep raised by 3 chromas. (A shortcut can be employed by simply subtracting only the L-values.) The decoding scheme below shows how the "large 4-mosstep plus 3 chromas" can be decoded into more familiar terms. In this example, since the large 4-mosstep is the perfect bright generator, adding 3 chromas makes it triply augmented.
Value | Encoded | Decoded | ||||
---|---|---|---|---|---|---|
Intervals with 2 sizes | Intervals with 1 size | Nonperfectable intervals | Bright gen | Dark gen | Period intervals | |
2 | Large plus 2 chromas | Perfect plus 2 chromas | 2× Augmented | 2× Augmented | 3× Augmented | 2× Augmented |
1 | Large plus 1 chroma | Perfect plus 1 chroma | Augmented | Augmented | 2× Augmented | Augmented |
0 | Large | Perfect | Major | Perfect | Augmented | Perfect |
-1 | Small | Perfect minus 1 chroma | Minor | Diminished | Perfect | Diminished |
-2 | Small minus 1 chroma | Perfect minus 2 chromas | Diminished | 2× Diminished | Diminished | 2× Diminished |
-3 | Small minus 2 chromas | Perfect minus 3 chromas | 2× Diminished | 3× Diminished | 2× Diminished | 3× Diminished |
Rationale:
- Vectors of L's and s's can always be translated back to the original k-mosstep, no matter how many chromas were added. The "unmodified" vector (the large k-mosstep, or perfect k-mosstep for period intervals) can be compared with the mosstep vector to produce the number of chromas.
- Alterations by entire large steps or small steps is considered interval arithmetic.
- Easy to translate values to number of chromas for mos notation. Best done with notation assigned to the brightest mode, but can be adapted for arbitrary notations by adjusting the approprite chroma offsets.
Examples of encodings for 5L 2s
Interval in mossteps | Encoding | Decoding | Standard notation in the key of F | |
---|---|---|---|---|
Mossteps | Chroma | |||
0 | 0 | 0 | Perfect 0-diastep | F |
s | 1 | -1 | Minor 1-diastep | Gb |
L | 1 | 0 | Major 1-diastep | G |
L + s | 2 | -1 | Minor 2-diastep | Ab |
2L | 2 | 0 | Major 2-diastep | A |
2L + s | 3 | -1 | Perfect 3-diastep | Bb |
3L | 3 | 0 | Augmented 3-diastep | B |
2L + 2s | 4 | -1 | Diminished 4-diastep | Cb |
3L + s | 4 | 0 | Perfect 4-diastep | C |
3L + 2s | 5 | -1 | Minor 5-diastep | Db |
4L + s | 5 | 0 | Major 5-diastep | D |
4L + 2s | 6 | -1 | Minor 6-diastep | Eb |
5L + s | 6 | 0 | Major 6-diastep | E |
5L + 2s | 7 | 0 | Perfect 7-diastep | F |
Mode names | Ordering | Step pattern | Scale degree (encoded) | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Default | Names | Bri. | Rot. | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | |
5L 2s 6|0 | Lydian | 1 | 1 | LLLsLLs | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
5L 2s 5|1 | Ionian (major) | 2 | 5 | LLsLLLs | 0 | 0 | 0 | -1 | 0 | 0 | 0 | 0 |
5L 2s 4|2 | Mixolydian | 3 | 2 | LLsLLsL | 0 | 0 | 1 | -1 | 0 | 0 | -1 | 0 |
5L 2s 3|3 | Dorian | 4 | 6 | LsLLLsL | 0 | 0 | -1 | -1 | 0 | 0 | -1 | 0 |
5L 2s 2|4 | Aeolian (minor) | 5 | 3 | LsLLsLL | 0 | 0 | -1 | -1 | 0 | -1 | -1 | 0 |
5L 2s 1|5 | Phrygian | 6 | 7 | sLLLsLL | 0 | -1 | -1 | -1 | 0 | -1 | -1 | 0 |
5L 2s 0|6 | Locrian | 7 | 4 | sLLsLLL | 0 | -1 | -1 | -1 | -1 | -1 | -1 | 0 |