No-fives subgroup temperaments

From Xenharmonic Wiki
(Redirected from Io)
Jump to navigation Jump to search

This is a collection of subgroup temperaments which omit the prime harmonic of 5.

Temperaments with a 2.3.7 gene

Semaphore

See Semaphoresmic clan #Semaphore.

Bleu

Bleu can be described as the 9 & 17 temperament in the no-5 13-limit.

Subgroup: 2.3.7

Comma list: 17496/16807

Sval mapping[1 1 2], 0 5 7]]

Gencom mapping[1 1 0 2], 0 5 0 7]]

gencom: [2 54/49; 17496/16807]

Optimal tuning (POTE): ~2 = 1\1, ~54/49 = 139.848

Optimal ET sequence9, 17, 43, 60d

RMS error: 1.917 cents

2.3.7.11 subgroup

Subgroup: 2.3.7.11

Comma list: 99/98, 864/847

Sval mapping: [1 1 2 3], 0 5 7 4]]

Gencom mapping: [1 1 0 2 3], 0 5 0 7 4]]

gencom: [2 12/11; 99/98 864/847]

Optimal tuning]] (POTE): ~2 = 1\1, ~12/11 = 140.005

Optimal ET sequence: 9, 17, 43, 60d

RMS error: 1.829 cents

2.3.7.11.13 subgroup

Subgroup: 2.3.7.11.13

Comma list: 78/77, 99/98, 144/143

Sval mapping: [1 1 2 3 3], 0 5 7 4 6]]

Gencom mapping: [1 1 0 2 3 3], 0 5 0 7 4 6]]

gencom: [2 13/12; 78/77 99/98 144/143]

Optimal tuning (POTE): ~2 = 1\1, ~13/12 = 139.990

Optimal ET sequence: 17, 43, 60d

RMS error: 1.752 cents

Music

Archy

See Archytas clan #Archy.

Supra

See Archytas clan #Supra.

Supraphon

See Archytas clan #Supraphon.

Suhajira

See Rastmic clan #Suhajira.

Flutterpyth

Subgroup: 2.3.7.11.13.19

Comma list: 64/63, 209/208, 343/342, 364/363

Mapping: [1 1 4 10 15 9], 0 -1 -2 -11 -19 -8]]

Optimal tuning (CTE): ~3/2 = 713.459

Restricted to 2.3.7.11.13, this temperament is a no-5 restriction of 13-limit Ultrapyth. This temperament was created to yield blackdye tunings where aberrisma-altered 3-limit thirds become tempered 13/11~19/16 and 14/11.

Skwares

Skwares is the no-5 restriction of squares.

Subgroup: 2.3.7

Comma list: 19683/19208

Sval mapping[1 3 6], 0 -4 -9]]

Gencom mapping[1 3 0 6], 0 -4 0 -9]]

gencom: [2 9/7; 19683/19208]

Optimal tuning (POTE): ~9/7 = 425.365

Optimal ET sequence14, 17, 31, 48, 79, 189b, 268bd, 347bd

RMS error: 1.149 cents

Related temperament: squares

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 99/98, 243/242

Sval mapping: [1 3 6 7], 0 -4 -9 -10]]

Gencom mapping: [1 3 0 6 7], 0 -4 0 -9 -10]]

gencom: [2 9/7; 99/98 243/242]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 425.244

Optimal ET sequence: 5, 8, 11, 14, 17, 31, 48, 79, 127, 206bcd

RMS error: 1.099 cents

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 78/77, 99/98, 243/242

Sval mapping: [1 3 6 7 9], 0 -4 -9 -10 -15]]

Gencom mapping: [1 3 0 6 7 9], 0 -4 0 -9 -10 -15]]

gencom: [2 9/7; 78/77, 99/98, 243/242]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 424.457

Optimal ET sequence: 17, 48f, 65ef, 82d, 147df

RMS error: 1.769 cents

Skwairs

Subgroup: 2.3.7.11.13

Comma list: 99/98, 144/143, 243/242

Sval mapping: [1 3 6 7 3], 0 -4 -9 -10 2]]

Gencom mapping: [1 3 0 6 7 3], 0 -4 0 -9 -10 2]]

gencom: [2 9/7; 99/98, 144/143, 243/242]

Optimal tuning (POTE): ~2 = 1\1, ~9/7 = 424.702

Optimal ET sequence: 14, 17, 31

RMS error: 1.290 cents

Byhearted
For the full 19-limit version of this temperament, see Tetracot family #Byhearted.

Subgroup: 2.3.7.11.19

Comma list: 99/98, 243/242, 363/361

Sval mapping: [2 2 3 4 5], 0 4 9 10 12]]

gencom: [209/147 21/19; 99/98 243/242 363/361]

Optimal tuning (POTE): ~2 = 1\1, ~21/19 = 174.735

Optimal ET sequence: 14, 34dh, 48, 110e, 158e

RMS error: 0.8727 cents

Harrison

Subgroup: 2.3.7

Comma: 59049/57344

Gencom: [2 3/2; 59049/57344]

Gencom mapping: [1 1 0 -3], 0 1 0 10]]

Sval mapping: [1 1 -3], 0 1 10]]

POL2 generator: ~3/2 = 696.544

Optimal ET sequence12, 19, 31, 112b, 143b, 174b

RMS error: 1.226 cents

Related temperament: septimal meantone

Leapfrog

In regular 13-limit leapday, the mapping for prime 5 is very complex at +21 generator steps. Furthermore, adding prime 5 to rank-3 parapythic is arguably against the original vision of it as a 2.3.7.11.13-subgroup temperament, so avoiding prime 5 may be preferred for this reason also. This results in no-5's leapday, or leapfrog, which as aforementioned is much lower in badness, but it also allows more tunings to be used: a notable patent val tuning not appearing in the optimal ET sequence is 80edo, which is approximately the just-13's tuning (as 10edo is used as a consistent circle of ~16/13's therein), with 13/8 still tuned slightly flat so qualifying a reasonable tuning for the 2.3.13 subgroup (as evidenced by appearing in the sequence for tetris). In other words, the only reason 80edo was "disqualified" from leapday is that the mapping for prime 5 constrains the tuning range which is naturally more flexible as a no-5's 13-limit temperament, which is also a sign of leapfrog being very efficient.

Other related temperaments include leapweek and srutal.

Subgroup: 2.3.7

Comma list: 14680064/14348907

Sval mapping[1 0 -21], 0 1 15]]

Gencom mapping[1 1 0 -6], 0 1 0 15]]

gencom: [2 3/2; 14680064/14348907]

Optimal tunings:

  • POTE: ~2 = 1\1, ~3/2 = 704.721

Optimal ET sequence17, 46, 63

RMS error: 0.6202 cents

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 896/891, 1331/1323

Sval mapping[1 0 -21 -14], 0 1 15 11]]

Gencom mapping[1 1 0 -6 -3], 0 1 0 15 11]]

gencom: [2 3/2; 896/891 1331/1323]

Optimal tunings:

  • POTE: ~3/2 = 704.753

Optimal ET sequence17, 46, 63

RMS error: 0.6047 cents

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 169/168, 352/351, 364/363

Sval mapping[1 0 -21 -14 -9], 0 1 15 11 8]]

Gencom mapping[1 1 0 -6 -3 -1], 0 1 0 15 11 8]]

gencom: [2 3/2; 169/169 352/351 364/363]

Optimal tunings:

  • CTE: ~2 = 1\1, ~3/2 = 704.633
  • POTE: ~2 = 1\1, ~3/2 = 704.745

Optimal ET sequence17, 46, 63

RMS error: 0.7541 cents

Skidoo

Subgroup: 2.3.7.11.13.23

Comma list: 169/168, 208/207, 352/351, 364/363

Sval mapping[1 0 -21 -14 -9 -5], 0 1 15 11 8 6]]

Gencom mapping[1 1 0 -6 -3 -1 0 0 1], 0 1 0 15 11 8 0 0 6]]

gencom: [2 3/2; 169/169 208/207 352/351 364/363]

Optimal tunings:

  • POTE: ~2 = 1\1, ~3/2 = 704.729

Optimal ET sequence17, 46, 63

RMS error: 0.6265 cents

2.3.7.11.13.23.29

Subgroup: 2.3.7.11.13.23.29

Comma list: 169/168, 208/207, 232/231, 352/351, 364/363

Sval mapping[1 0 -21 -14 -9 -5 -38], 0 1 15 11 8 6 27]]

Gencom mapping[1 1 0 -6 -3 -1 0 0 1 -11], 0 1 0 15 11 8 0 0 6 27]]

gencom: [2 3/2; 169/169 208/207 352/351 364/363]

Optimal tunings:

  • POTE: ~2 = 1\1, ~3/2 = 704.729

Optimal ET sequence17, 46, 63

Music

Doublehearted

Subgroup: 2.3.7

Comma list: 5764801/5668704

Gencom: [2 343/324; 5764801/5668704]

Sval mapping: [1 1 2], 0 8 11]]

POL2 generator: ~343/324 = 87.8304

Optimal ET sequence14, 27, 41

RMS error: 0.5041 cents

Related temperaments: octacot

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 243/242, 2401/2376

Gencom: [2 22/21; 243/242 2401/2376]

Sval mapping: [1 1 2 2], 0 8 11 20]]

POL2 generator: ~22/21 = 87.6512

Optimal ET sequence14, 27e, 41, 96d, 137d, 178d

RMS error: 0.7147 cents

Related temperaments: octacot

2.3.7.11.19

Subgroup: 2.3.7.11.19

Comma list: 133/132, 243/242, 343/342

Gencom: [2 19/18; 133/132 243/242 343/342]

Sval mapping: [1 1 2 2 3], 0 8 11 20 17]]

POL2 generator: ~19/18 = 87.6684

Optimal ET sequence14, 27e, 41

RMS error: 0.7065 cents

Related temperaments: octacot

Magi

Subgroup: 2.3.7

Comma list: 537824/531441

Gencom: [2 243/196; 537824/531441]

Sval mapping: [1 0 -1], 0 5 12]]

POL2 generator: ~243/196 = 380.661

Optimal ET sequence19, 22, 41, 104, 145, 186

RMS error: 0.4277 cents

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 896/891, 26411/26244

Gencom: [2 96/77; 896/891 26411/26244]

Sval mapping: [1 0 -1 6], 0 5 12 -8]]

POL2 generator: ~96/77 = 380.768

Optimal ET sequence19, 22, 41, 63, 104

RMS error: 0.4262 cents

Balthazar

Subgroup: 2.3.7.11.13

Comma list: 169/168, 896/891, 26411/26244

Gencom: [2 143/128; 169/168 896/891 26411/26244]

Sval mapping: [1 0 -1 6 1], 0 10 24 -16 17]]

POL2 generator: ~143/128 = 190.407

Optimal ET sequence19, 44, 63, 145f

RMS error: 0.6937 cents

Caspar

Subgroup: 2.3.7.11.13

Comma list: 144/143, 343/338, 729/728

Gencom: [2 26/21; 144/143 343/338 729/728]

Sval mapping: [1 0 -1 6 -2], 0 5 12 -8 18]]

POL2 generator: ~26/21 = 380.531

Optimal ET sequence19, 22f, 41

RMS error: 1.032 cents

Melchior

Subgroup: 2.3.7.11.13

Comma list: 352/351, 364/363, 26411/26244

Gencom: [2 96/77; 352/351 364/363 26411/26244]

Sval mapping: [1 0 -1 6 11], 0 5 12 -8 -23]]

POL2 generator: ~96/77 = 380.766

Optimal ET sequence19f, 22, 41, 63, 104

RMS error: 0.3891 cents

Hogwarts

Subgroup: 2.3.7.29

Comma list: 784/783, 5887/5832

Gencom: [2 36/29; 784/783 5887/5832]

Sval mapping: [1 0 -1 2], 0 5 12 9]]

POL2 generator: ~36/29 = 380.618

Optimal ET sequence19, 22, 41, 145, 186j, 227j

Twenothology

Subgroup: 2.3.7.11.13.29

Comma list: 144/143, 232/231, 343/338, 729/728

Sval mapping: [1 0 -1 6 -2 2], 0 5 12 -8 18 9]]

POL2 generator: ~26/21 = 380.526

Optimal ET sequence19, 22f, 41

Lee

Subgroup: 2.3.7

Comma: 177147/175616

Gencom: [2 81/56; 177147/175616]

Gencom mapping: [1 0 0 -3], 0 3 0 11]]

Sval mapping: [1 0 -3], 0 3 11]]

POL2 generator: ~81/56 = 633.525

Optimal ET sequence17, 36, 89, 125, 161, 358, 519b

RMS error: 0.3519 cents

Buzzard

Subgroup: 2.3.7

Comma list: 1728/1715, 5120/5103

Mapping[1 0 4], 0 4 -3]]

Optimal tuning (CTE): ~2 = 1\1, ~21/16 = 475.727

Optimal ET sequence5, 33, 38, 43, 48, 53, 58

Badness (Dirichlet): 0.824

Slendric

Subgroup: 2.3.7

Comma: 1029/1024

Gencom: [2 8/7; 1029/1024]

Gencom mapping: [1 1 0 3], 0 3 0 -1]]

Sval mapping: [1 1 3], 0 3 -1]]

POL2 generator: ~8/7 = 233.688

Optimal ET sequence5, 21, 26, 31, 36, 77, 113, 190

RMS error: 0.3202 cents

Baladic

Subgroup: 2.3.7.13

Comma list: 169/168, 1029/1024

Gencom: [91/64 8/7; 169/168 1029/1024]

Sval mapping: [2 2 6 7], 0 3 -1 1]]

POL2 generator: ~8/7 = 233.6044

Optimal ET sequence10, 26, 36, 154…, 190…, 226…, 262

RMS error: 0.5452 cents

2.3.7.13.17

Subgroup: 2.3.7.13.17

Comma list: 169/168, 273/272, 289/288

Gencom: [17/12 8/7; 169/168 273/272 289/288]

Sval mapping[2 2 6 7 7], 0 3 -1 1 3]]

POL2 generator: ~8/7 = 233.6155

Optimal ET sequence10, 26, 36, 154…, 190…, 226

RMS error: 0.5073 cents

Hemif

Related temperaments: hemififths, namo

Subgroup: 2.3.7

Comma list: 1605632/1594323

Sval mapping[1 1 -1], 0 2 13]]

Gencom mapping[1 1 0 -1], 0 2 0 13]]

gencom: [2 2187/1792; 1605632/1594323]

Optimal tuning (POTE): ~2 = 1\1, ~2187/1792 = 351.485

Optimal ET sequence7, 17, 41, 58, 99

RMS error: 0.2344 cents

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 243/242, 896/891

Sval mapping: [1 1 -1 2], 0 2 13 5]]

Gencom mapping: [1 1 0 -1 2], 0 2 0 13 5]]

gencom: [2 11/9; 243/242 896/891]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.535

Optimal ET sequence: 7, 17, 41, 58, 99e

RMS error: 0.6108 cents

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 144/143, 243/242, 364/363

Sval mapping: [1 1 -1 2 4], 0 2 13 5 -1]]

Gencom mapping: [1 1 0 -1 2 4], 0 2 0 13 5 -1]]

gencom: [2 11/9; 144/143 243/242 364/363]

Optimal tuning (POTE): ~2 = 1\1, ~11/9 = 351.691

Optimal ET sequence: 7, 10, 17, 24, 41, 58

RMS error: 0.7167 cents

Heartful

Related temperaments: bunya

Subgroup: 2.3.7.11.19

Comma list: 243/242, 896/891, 1083/1078

Sval mapping: [1 1 -1 2 0], 0 4 26 10 29]]

gencom: [2 21/19; 243/242 896/891 1083/1078]

Optimal tuning (POTE): ~2 = 1\1, ~21/19 = 175.804

Optimal ET sequence: 34dh, 41, 116e, 157e

RMS error: 0.5360 cents

Hearts

Subgroup: 2.3.7

Comma list: 34451725707/34359738368 (trila-quadzo comma)

Gencom: [2 567/512; 34451725707/34359738368]

Sval mapping: [1 1 5], 0 4 -15]]

POL2 generator: ~567/512 = 175.433

Optimal ET sequence7, 27d, 34, 41, 89, 130, 171

RMS error: 0.0529 cents

Related temperaments: monkey, sesquiquartififths

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 243/242, 65536/65219

Gencom: [2 256/231; 243/242 65536/65219]

Sval mapping: [1 1 5 2], 0 4 -15 10]]

POL2 generator: ~256/231 = 175.369

Optimal ET sequence7, 27de, 34, 41, 89, 130

RMS error: 0.3224 cents

Related temperaments: monkey, sesquart

2.3.7.11.19

Subgroup: 2.3.7.11.19

Comma list: 243/242, 513/512, 1083/1078

Gencom: [2 21/19; 243/242 513/512 1083/1078]

Sval mapping: [1 1 5 2 6], 0 4 -15 10 -12]]

POL2 generator: ~21/19 = 175.341

Optimal ET sequence7, 27deh, 34, 41, 89, 130, 219

RMS error: 0.3121 cents

Related temperaments: monkey, sesquart

Navy

Subgroup: 2.3.7

Comma list: 282429536481/281974669312

Mapping[1 1 0], 0 5 24]]

POL2 generator: ~243/224 = 140.366

Optimal ET sequence17, 60, 77, 94, 171, 265, 436

RMS error: 0.0296 cents

Related temperaments: tsaharuk, quanic

2.3.7.11

Subgroup: 2.3.7.11

Comma list: 1331/1323, 19712/19683

Mapping[1 1 0 1], 0 5 24 21]]

POL2 generator: ~88/81 = 140.407

Optimal ET sequence17, 60e, 77, 94, 359e, 453ee, 547ee, 641ee

RMS error: 0.3778 cents

Related temperaments: tsaharuk, quanic

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 352/351, 729/728, 1331/1323

Mapping[1 1 0 1 3], 0 5 24 21 6]]

POL2 generator: ~13/12 = 140.437

Optimal ET sequence17, 60e, 77, 94

RMS error: 0.4044 cents

Related temperaments: tsaharuk, quanic

Slendrismic

In slendrismic, the period (1\5) is given a very accurate interpretation of 147/128 = (3/2)/(8/7)2 = 8/7 * 1029/1024 = S7/S8, which is a significant interval as it is the "harmonic 5edostep" in that it's a rooted (/2^n) interval that approximates 1\5 very well. The generator is 1029/1024, the difference between 8/7 and 147/128 and therefore between 3/2 and (8/7)3. The temperament is named for the very "slender" generator as well as as a pun on "slendric" (which it shouldn't be confused with). One can consider this as a microtemperament counterpart to cloudy, which equates them.

Subgroup: 2.3.7

Comma list: 68719476736/68641485507

Mapping[5 8 14], 0 -2 1]]

POL2 generator: ~1029/1024 = 8.9906

Optimal ET sequence130, 135, 265, 400, 935, 1335, 1735

RMS error: 0.0212 cents

Related temperaments: hemipental

Pentadecoid

In pentadecoid, the period (1\15) is given an interpretation of 22/21, and four of them represent keenanismic minor third, 77/64 = (147/128) * (22/21). The temperament is named for an analog of its relating temperaments, decoid (130 & 140) and triacontoid (120 & 150). Triacontoid is a weak extension of pentadecoid, as well as slendscape (255 & 270).

Subgroup: 2.3.7.11

Comma list: 1362944/1361367, 1771561/1769472

Mapping: [15 108 0 94], 0 -2 1 -1]]

mapping generators: ~22/21, ~7

Optimal tuning (CTE): ~22/21 = 1\15, ~8/7 = 231.0071 (~1029/1024 = 8.9929)

Optimal ET sequence120, 135, 660, 795, 930, 1065, 1200

RMS error: 0.0570 cents

Hectosaros leap week

Defined as the 320 & 1803 temperament, in the 2.3.7.13.17.19 on the basis of the fact that 1803 tropical years make up almost exactly 100 saros cycles.

Subgroup: 2.3.7

Comma list: [-50 -746 439

Mapping: [1 313 532], 0 -439 -746]]

Optimal tuning (CTE): ~[17 343 143 = 851.248

Optimal ET sequence320, 1163bdd, 1483bd, 1803, 2123, 4566, 6689

RMS error: 0.0164 cents

2.3.7.13 subgroup

Subgroup: 2.3.7.13

Comma list: [-42 -2 -5 16, [10 -46 29 -5

Mapping: [1 313 532 208], 0 -439 -746 -288]]

Optimal tuning (CTE): ~1235079060111/755603996672 = 851.248

Optimal ET sequence320, 1163bdd, 1483bd, 1803, 2123, 4566, 6689

2.3.7.13.17 subgroup

Subgroup: 2.3.7.13.17

Comma list: 39337984/39328497, [0 -14 7 4 -3, [-18 -24 14 -1 5

Mapping: [1 313 532 208 58], 0 -439 -746 -288 -76]]

Optimal tuning (CTE): ~6144/3757 = 851.248

Optimal ET sequence320, 1483bd, 1803, 2123

2.3.7.13.17.19 subgroup

Subgroup: 2.3.7.13.17.19

Comma list: 10081799/10077696, 39337984/39328497, 10754912/10744731, 480024727/480020256

Mapping: [1 313 532 208 58 432], 0 -439 -746 -288 -76 -603]]

Optimal tuning (CTE): ~6144/3757 = 851.248

Optimal ET sequence320, 1483bd, 1803, 2123

Purpleheart

Subgroup: 2.3.7

Comma list: 2187/2048

Mapping[7 11 0], 0 0 1]]

mapping generators: ~9/8, ~7

Optimal tuning (CTE): ~9/8 = 1\7, ~7/4 = 968.826 (~64/63 = 59.746)

Optimal ET sequence7, 14, 35, 49bd

Badness: 0.0875

Ennea

Subgroup: 2.3.7.11

Comma list: 41503/41472, 43923/43904

Gencom: [2 99/98; 41503/41472, 43923/43904]

Gencom mapping: [1 14/9 0 25/9 31/9], 0 2 0 2 1]]

Sval mapping: [9 0 11 24], 0 2 2 1]]

POL2 generator: ~99/98 = 17.6258

Optimal ET sequence54, 63, 72, 135, 342, 477, 1089, 1566

RMS error: 0.0383 cents

Parapyth (rank 3)

Subgroup: 2.3.7.11

Comma list: 896/891

Gencom: [2 3/2 28/27; 896/891]

Gencom mapping: [1 1 0 1 4], 0 1 0 3 -1], 0 0 0 1 1]]

Sval mapping: [1 0 0 7], 0 1 0 -4], 0 0 1 1]]

POL2 tuning: ~3 = 1903.834, ~7 = 3369.872

Optimal ET sequence17, 36, 41, 58, 63, 104

RMS error: 0.4149 cents

2.3.7.11.13

Subgroup: 2.3.7.11.13

Comma list: 352/351, 364/363

The gencom below gives Margo Schulter's favored basis

Gencom: [2 3/2 28/27; 352/351 364/363]

Gencom mapping: [1 1 0 1 4 6], 0 1 0 3 -1 -4], 0 0 0 1 1 1]]

Sval mapping: [1 0 0 7 12], 0 1 0 -4 -7], 0 0 1 1 1]]

POL2 tuning: ~3 = 1903.856, ~7 = 3369.907

Optimal ET sequence17, 41, 46, 58, 87, 104

RMS error: 0.3789 cents

Heartland (rank 3)

Heartland, with a generator of ~21/19, is named for its tempering of the heartlandisma, 3971/3969. Aside from the heartlandisma, the heartland temperament tempers out 243/242 (rastma) and 1083/1078 (bihendrixma), and slices the fifth in four (the number of chambers of the heart).

Subgroup: 2.3.7.11.19

Comma list: 243/242, 1083/1078

Gencom: [2 21/19 7; 243/242 1083/1078]

Sval mapping: [1 1 0 2 1], 0 4 0 10 3], 0 0 1 0 1]]

POL2 generator: ~21/19 = 175.2713, ~7 = 3369.3784

Optimal ET sequence7, 14, 27e, 34dh, 41, 89, 130

RMS error: 0.3066 cents

Temperaments with a 2.3.11 gene

Io

Io is a very low-complexity temperament which tempers out the undecimal quartertone 33/32. This equates very different intervals (for example, the generator itself represents both 3/2 and 16/11), and as such some consider it to be an exotemperament. It has an extremely wide generator range, but the most accurate tunings are generally inside the range of flattone temperament.

The name Io was coined by CompactStar in 2024 based on the color name ilo, prior to which it could only be termed as "undecimal temperament" with 33/32 being known as the undecimal comma.

Subgroup: 2.3.11

Comma list: 33/32

Sval mapping[1 0 5], 0 1 -1]]

mapping generators: ~2, ~3

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 692.713

Optimal ET sequence2, 5, 7, 12e

Badness: 0.185

Paralimmal

Subgroup: 2.3.11

Comma list: 4096/3993

Sval mapping[1 0 4], 0 3 -1]]

Optimal tuning (CTE): ~2 = 1/1, ~16/11 = 634.320

Optimal ET sequence11b, 13, 15, 17

RMS error: 1.237 cents

Neutral

See Rastmic clan #Neutral

Namo

See Rastmic clan #Namo

Huxley

Huxley, the 4 & 13 temperament in the 2.3.11.13 subgroup, extends lovecraft. Specifically it tunes the ~13/8 to exactly half of ~8/3.

Subgroup: 2.3.11.13

Comma list: 512/507, 1352/1331

Sval mapping[1 3 3 3], 0 -6 2 3]]

mapping generators: ~2, ~13/11

Optimal tunings:

  • CTE: ~2 = 1\1, ~13/11 = 282.726
  • CWE: ~2 = 1\1, ~13/11 = 282.482

Optimal ET sequence4, 13, 17

Badness: 0.0263

Aerophore

Subgroup: 2.3.11.19

Comma list: 363/361, 729/704

Sval mapping[1 0 -6 -6], 0 2 12 13]]

Optimal tuning (POTE): ~2 = 1\1, ~19/11 = 945.4

Optimal ET sequence9eehh, 14, 19, 33

Semaerophore

Subgroup: 2.3.7.11.19

Comma list: 49/48, 77/76, 729/704

Sval mapping[1 0 2 -6 -6], 0 2 1 12 13]]

Optimal tuning (POTE): ~2 = 1\1, ~7/4 = 944.667

Optimal ET sequence9eehh, 14, 33d, 47deh

Temperaments with a 2.3.13 gene

Superflat

Superflat is a diatonic-based temperament that makes 1053/1024 vanish, so 13/8 is a minor sixth, and 16/13 is a major third. The more accurate tunings for this temperament are generated by a fifth at least as flat as those of flattone, although often even flatter (such as 40edo's fifth). Superflat can be viewed as a 2.3.13 subgroup analogue of meantone and archy. Superflat diatonic scales have a character somewhere between neutral third scales (or mosh) and meantone diatonic scales.

Subgroup: 2.3.13

Comma list: 1053/1024

Sval mapping[1 1 6], 0 1 -4]]

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 692.939

Optimal ET sequence5f, 7, 12, 19, 45f, 64f, 147bfff

RMS error: 1.591 cents

2.3.11.13

Subgroup: 2.3.11.13

Comma list: 144/143, 729/704

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 692.247

Optimal ET sequence7, 19, 26, 59b

Ultraflat

Ultraflat is the much more inaccurate cousin of superflat, with even flatter fifths. 27/26 is tempered out rather than 1053/1024, so 13/8 is a major sixth. These temperamenets intersect in 7edo, where major sixths and minor sixths are not distinguished.

Subgroup: 2.3.13

Comma list: 27/26

Sval mapping[1 1 2], 0 1 3]]

Optimal tuning (CTE): ~2 = 1/1, ~3/2 = 688.391

Optimal ET sequence5, 7

RMS error: 4.367 cents

Threedic

Subgroup: 2.3.13

Comma list: 2197/2187

Sval mapping[1 0 0], 0 3 7]]

Optimal tuning (CTE): ~2 = 1/1, ~13/9 = 634.173

Optimal ET sequence11bff, 13f, 15, 17, 36, 53, 70, 123, 193, 316, 755f

RMS error: 0.2054 cents

Shoal

The 2.3.13.23 subgroup is remarkable for containing not one but two superparticular intervals as small as 3888/3887 and 12168/12167. Tempering out both of them gives us a rank-2 temperament where a sharp whole tone of 26/23 is the generator, two of which stack to a 23/18 supermajor third, and eight of which stack to a 8/3 perfect eleventh. 17edo is a trivial tuning where 26/23 is equated to 9/8, tempering out the comma 208/207. More accurate tunings of shoal create a 17-note MOS scale, serving as a circulating temperament of 17edo, where 208/207 is the chroma between large and small steps.

Subgroup: 2.3.13.23

Comma list: 3888/3887, 12168/12167

Sval mapping[1 3 6 7], 0 -8 -13 -14]]

Optimal tuning (CTE): ~2 = 1/1, ~26/23 = 212.261

Optimal ET sequence11fi, 17, 79, 96, 113, 130, 147, 424, 571, 1289, 1860, 3149

Badness (Dirichlet): 0.021

Temperaments with a higher-limit gene

Semitonic

Subgroup: 2.3.17

Comma list: 289/288

Sval mapping[2 0 5], 0 1 1]]

sval mapping generators: ~17/12, ~3
gencom: [17/12 3; 289/288]

Optimal tuning (CTE): ~17/12 = 1\2, ~3/2 = 702.3472 (~17/16 = 102.3472)

Optimal ET sequence12, 58, 70, 82, 94, 106, 118, 224g

RMS error: 0.2247 cents

Gigapyth

Subgroup: 2.3.85

Comma list: 2.3.85 -40 1 6]

Sval mapping[1 4 6], 0 -6 1]]

mapping generators: ~2, ~85/64

Optimal tuning (CTE): ~2 = 1\1, ~85/64 = 483.034

Supporting ETs: 5, 47, 52, 57, 62, 67, 72, 77*, 82*, 87*, 92*, 139*, 149*, 159*

*Wart for 85

2.3.7.85 subgroup

Subgroup: 2.3.7.85

Comma list: 1029/1024, 7225/7203

Sval mapping[1 4 2 6], 0 -6 2 1]]

mapping generators: ~2, ~85/64

Optimal tuning (CTE): ~2 = 1\1, ~85/64 = 483.031

Supporting ETs: 5, 47, 52, 57, 62, 67, 72, 77*, 82*, 87*, 92*, 139*, 149*, 159*

*Wart for 85

Dog

The dog temperament is based by 2L 5s or 7L 2s scale that makes 81/76 vanish, so 19/16 is a major third. It can be viewed as a 2.3.19 subgroup analogue of mavila.

Subgroup: 2.3.19

Comma list: 81/76

Gencom: [2 4/3; 81/76]

Sval mapping: [1 2 6], 0 -1 -4]]

POL2 generator: ~4/3 = 521.403

Optimal ET sequence5h, 7, 16, 23

RMS error: 4.943 cents

Boethian

Boethian is a diatonic-based temperament that makes 513/512 vanish, so 19/16 is a minor third. It can be viewed as a 2.3.19 subgroup analogue of schismic temperament.

Subgroup: 2.3.19

Comma list: 513/512

Mapping[1 0 9], 0 1 -3]]

Mapping generators: ~2, ~3

Optimal tuning (CTE): ~2 = 1\1, ~3/2 = 701.3288

Optimal ET sequence5, 7, 12, 41, 53, 65, 77, 219, 296

Badness: 0.000374

Lipsett

Lipsett temperament is a pleasantly melodic little temperament with a highly useable 5-tone and 9-tone mos. It is audibly similar to semaphore temperament, so it could be thought of as semaphore but for the 23rd harmonic instead of the 7th. It is named for Arthur Lipsett, the director off the Canadian short film ’21-87’. Leia’s prison cell in Star Wars is numbered ‘2187’, as a nod to the influence the film had on George Lucas.

Subgroup: 2.3.23

Comma list: 2187/2116

Sval mapping[1 0 -1], 0 2 7]]

Optimal tuning (CTE): ~2 = 1\1, ~46/27 = 948.526

Optimal ET sequence5, 14, 19, 43, 62i, 81i

Badness (Smith): 8.998 × 10-3

Porpoise

Subgroup: 2.3.29

Comma list: 24576/24389

Mapping: [1 2 5], 0 3 -1]]

CTE generator: ~32/29 = 166.067

Optimal ET sequence7, 22, 29, 94, 123, 152j, 275jj, 427jjj

Sematology

This temperament tempers out 4107/4096 and thus equates 2 37/32's with 4/3.

Subgroup: 2.3.37

Comma list: 4107/4096

Gencom: [2 37/32; 4107/4096]

Mapping: [1 1 5], 0 -2 1]]

POTE generator: ~37/32 = 249.075

Optimal ET sequence5, 14, 19, 24, 53, 77, 130

2.3.7.37 subgroup

Subgroup: 2.3.7.37

Comma list: 4107/4096, 259/256

Gencom: [2 37/32; 4107/4096 259/256]

Mapping: [1 1 1 5], 0 -2 -1 1]]

POTE generator: ~37/32 = 247.782

Optimal ET sequence5, 14, 19, 24, 53d

2.3.5.37 subgroup

It is difficult to extend sematology to include 5, due the 5th harmonic being quite high-complexity.

Subgroup: 2.3.5.37

Comma list: 4107/4096, 17592186044416/17562397269605

Gencom: [2 37/32; 4107/4096 17592186044416/17562397269605]

Mapping: [1 1 4 5], 0 -2 -8 1]]

POTE generator: ~37/32 = 251.393

Optimal ET sequence5, 14c, 19, 43, 62

2.3.5.7.37 subgroup

Subgroup: 2.3.5.7.37

Comma list: 4107/4096, 17592186044416/17562397269605, 259/256

Gencom: [2 37/32; 4107/4096 17592186044416/17562397269605 259/256]

Mapping: [1 1 4 1 5], 0 -2 -8 -1 1]]

POTE generator: ~37/32 = 251.204

Optimal ET sequence5, 14c, 19

Reversed mavila

Subgroup: 2.3.37

Comma list: 81/74

Gencom: [2 4/3; 81/74]

Mapping: [1 1 0], 0 -1 12]]

POTE generator: ~4/3 = 521.397

Optimal ET sequence5l, 7l, 9, 16l

Reversed meantone

Subgroup: 2.3.41

Comma list: 82/81

Gencom: [2 4/3; 82/81]

Sval mapping: [1 2 7], 0 -1 -4]]

POL2 generator: ~4/3 = 494.509

Optimal ET sequence5, 12, 17

2.3.7.41 subgroup

Subgroup: 2.3.7.41

Comma list: 64/63, 82/81

Gencom: [2 4/3; 64/63 82/81]

Sval mapping: [1 2 2 7], 0 -1 2 -4]]

POTE generator: ~4/3 = 490.0323

TOP generators: ~2 = 1197.2342, ~4/3 = 488.9029

Optimal ET sequence5, 12, 17, 22, 49

2.3.7.11.41 subgroup

Subgroup: 2.3.7.11.41

Comma list: 64/63, 82/81, 99/98

Gencom: [2 4/3; 64/63 82/81 99/98]

Sval mapping: [1 2 2 1 7], 0 -1 2 6 -4]]

POTE generator: ~4/3 = 492.1787

TOP generators: ~2 = 1197.9683, ~4/3 = 491.3454

Optimal ET sequence5, 12, 17, 22, 39d