User:Xenwolf/Fifthspan: Difference between revisions

From Xenharmonic Wiki
Jump to navigation Jump to search
Xenwolf (talk | contribs)
Separate mod steps: better naming of rows ("patent val", "~ (mod $edo)")
Xenwolf (talk | contribs)
Fifthspan examples: expanded from 1 to 99edo
Line 14: Line 14:
! 23
! 23
|-
|-
! EDO <br> ↓
! rowspan="2" | EDO <br> ↓
! Mapping <br> ↓
! rowspan="2" | Unique fifth <br> (mapping) <br>
| (1/1)
! colspan="9" | ↓ ([[octave-reduced]] corresponding primary intervals)
| (3/2)
|-
| (5/4)
! (1/1)
| (7/4)
! (3/2)
| (11/8)
! (5/4)
| (13/8)
! (7/4)
| (17/16)
! (11/8)
| (19/16)
! (13/8)
| (23/16)
! (17/16)
! (19/16)
! (23/16)
|-
! [[1edo]]
| N/A
|-
! [[2edo]]
| 1\2
| 0
| +1
| +1
| 0
| +1
| +1
| 0
| 0
| +1
|-
! [[3edo]]
| 2\3
| 0
| +1
| -1
| +1
| -1
| +1
| 0
| -1
| +1
|-
! [[4edo]]
| N/A
|-
|-
! [[5edo]]
! [[5edo]]
Line 37: Line 69:
| +2
| +2
| +1
| +1
|-
! [[6edo]]
| N/A
|-
|-
! [[7edo]]
! [[7edo]]
Line 73: Line 108:
| +4
| +4
| +1
| +1
|-
! [[10edo]]
| N/A
|-
|-
! [[11edo]]
! [[11edo]]
Line 102: Line 140:
| 0
| 0
| +1
| +1
| +7
| -6
| -2
| -2
| +4
| +4
Line 109: Line 147:
| +2
| +2
| -4
| -4
|-
! [[14edo]]
| N/A
|-
! [[15edo]]
| N/A
|-
|-
! [[16edo]]
! [[16edo]]
Line 157: Line 201:
| -3
| -3
| -6
| -6
|-
! [[20edo]]
| N/A
|-
! [[21edo]]
| N/A
|-
|-
! [[22edo]]
! [[22edo]]
Line 181: Line 231:
| +4
| +4
| +8
| +8
|-
! [[24edo]]
| N/A
|-
! [[25edo]]
| N/A
|-
|-
! [[26edo]]
! [[26edo]]
Line 205: Line 261:
| -8
| -8
| +11
| +11
|-
! [[28edo]]
| N/A
|-
|-
! [[29edo]]
! [[29edo]]
Line 217: Line 276:
| -3
| -3
| +6
| +6
|-
! [[30edo]]
| N/A
|-
|-
! [[31edo]]
! [[31edo]]
Line 231: Line 293:
|-
|-
! [[32edo]]
! [[32edo]]
| todo
| 19\32
| 0
| +1
| +14
| -2
| -11
| -14
| -15
| -8
| +11
|-
|-
! [[33edo]]
! [[33edo]]
| todo
| 19\33
| 0
| +1
| +11
| -9
| +6
| -4
| -12
| -10
| -13
|-
! [[34edo]]
| N/A
|-
! [[35edo]]
| N/A
|-
! [[36edo]]
| N/A
|-
|-
! [[37edo]]
! [[37edo]]
| todo
| 22\37
| 0
| +1
| +14
| -2
| -11
| +18
| -15
| -8
| +16
|-
! [[38edo]]
| N/A
|-
|-
! [[39edo]]
! [[39edo]]
Line 252: Line 353:
|-
|-
! [[40edo]]
! [[40edo]]
| todo
| 23\40
| 0
| +1
| +11
| -16
| +6
| -4
| -19
| -10
| -13
|-
|-
! [[41edo]]
! [[41edo]]
Line 267: Line 377:
|-
|-
! [[42edo]]
! [[42edo]]
| todo
| 25\42
| 0
| +1
| +14
| -2
| -11
| -19
| -20
| -8
| +16
|-
|-
! [[43edo]]
! [[43edo]]
| todo
| 25\43
| 0
| +1
| +4
| +10
| +18
| -16
| -5
| -3
| -18
|-
! [[44edo]]
| N/A
|-
|-
! [[45edo]]
! [[45edo]]
| todo
| 26\45
| 0
| +1
| +4
| -9
| +6
| +22
| +14
| +16
| -6
|-
|-
! [[46edo]]
! [[46edo]]
Line 288: Line 428:
|-
|-
! [[47edo]]
! [[47edo]]
| todo
| 27\47
| 0
| +1
| +11
| -16
| +13
| -4
| -19
| -10
| -13
|-
! [[48edo]]
| N/A
|-
|-
! [[49edo]]
! [[49edo]]
| todo
| 29\49
| 0
| +1
| +9
| -2
| +16
| +13
| -10
| +19
| -16
|-
|-
! [[50edo]]
! [[50edo]]
| todo
| 29\50
| 0
| +1
| +4
| +10
| -13
| +15
| -24
| -22
| -6
|-
! [[51edo]]
| N/A
|-
! [[52edo]]
| N/A
|-
|-
! [[53edo]]
! [[53edo]]
Line 307: Line 483:
| -3
| -3
| +18
| +18
|-
! [[54edo]]
| N/A
|-
! [[55edo]]
| 32\55
| 0
| +1
| +4
| +22
| -25
| +27
| -5
| -3
| -18
|-
! [[56edo]]
| 33\56
| 0
| +1
| +26
| -19
| -6
| -9
| -27
| +14
| -11
|-
! [[57edo]]
| N/A
|-
! [[58edo]]
| N/A
|-
! [[59edo]]
| 35\59
| 0
| +1
| -18
| -2
| +21
| -14
| +17
| -8
| +11
|-
! [[60edo]]
| N/A
|-
! [[61edo]]
| 36\61
| 0
| +1
| -13
| +20
| -6
| +30
| +12
| -25
| +28
|-
! [[62edo]]
| N/A
|-
! [[63edo]]
| 37\63
| 0
| +1
| -25
| +15
| +11
| +8
| +24
| -20
| +6
|-
! [[64edo]]
| 37\64
| 0
| +1
| -15
| -28
| +25
| -23
| +14
| +16
| -6
|-
! [[65edo]]
| 38\65
| 0
| +1
| -8
| -26
| -30
| +32
| +7
| -3
| +18
|-
! [[66edo]]
| N/A
|-
! [[67edo]]
| 39\67
| 0
| +1
| +4
| +22
| +30
| -28
| -5
| -3
| -18
|-
! [[68edo]]
| N/A
|-
! [[69edo]]
| 40\69
| 0
| +1
| +4
| +29
| -13
| +15
| -24
| -22
| -6
|-
! [[70edo]]
| 41\70
| 0
| +1
| +33
| +27
| -18
| -21
| -34
| -3
| -23
|-
! [[71edo]]
| 42\71
| 0
| +1
| +9
| -24
| +16
| +35
| -10
| -30
| +33
|-
! [[72edo]]
| N/A
|-
! [[73edo]]
| 43\73
| 0
| +1
| -30
| -19
| -6
| -9
| +29
| +14
| -11
|-
! [[74edo]]
| 43\74
| 0
| +1
| +4
| +10
| +18
| -16
| -36
| -34
| +25
|-
! [[75edo]]
| 44\75
| 0
| +1
| +21
| -31
| +11
| +37
| -22
| +26
| +6
|-
! [[76edo]]
| N/A
|-
! [[77edo]]
| 45\77
| 0
| +1
| -8
| -26
| +35
| +32
| +7
| -3
| +18
|-
! [[78edo]]
| N/A
|-
! [[79edo]]
| 46\79
| 0
| +1
| +16
| +22
| -37
| -28
| -5
| -3
| -18
|-
! [[80edo]]
| 47\80
| 0
| +1
| +38
| +15
| +11
| +8
| -39
| -20
| +6
|-
! [[81edo]]
| 47\81
| 0
| +1
| +4
| +10
| -13
| +15
| +26
| +28
| -6
|-
! [[82edo]]
| N/A
|-
! [[83edo]]
| 49\83
| 0
| +1
| -13
| +20
| -6
| -31
| +12
| +36
| -33
|-
! [[84edo]]
| N/A
|-
! [[85edo]]
| N/A
|-
! [[86edo]]
| N/A
|-
! [[87edo]]
| N/A
|-
! [[88edo]]
| 51\88
| 0
| +1
| +4
| +29
| -32
| +34
| -24
| -22
| -6
|-
! [[89edo]]
| 52\89
| 0
| +1
| -8
| -26
| -42
| +32
| +7
| -3
| +30
|-
! [[90edo]]
| 53\90
| 0
| +1
| +43
| -19
| -23
| -9
| -44
| +14
| -11
|-
! [[91edo]]
| 53\91
| 0
| +1
| +16
| +34
| +42
| -40
| -5
| -3
| -30
|-
! [[92edo]]
| N/A
|-
! [[93edo]]
| N/A
|-
! [[94edo]]
| 55\94
| 0
| +1
| -8
| -14
| +23
| +20
| -46
| -3
| -35
|-
! [[95edo]]
| 56\95
| 0
| +1
| +26
| +37
| -6
| +47
| -27
| +14
| +45
|-
! [[96edo]]
| N/A
|-
! [[97edo]]
| 57\97
| 0
| +1
| -42
| +32
| +11
| +8
| -39
| -20
| +6
|-
! [[98edo]]
| 57\98
| 0
| +1
| +4
| -33
| -25
| +27
| -5
| -46
| +37
|-
! [[99edo]]
| 58\99
| 0
| +1
| -37
| -43
| -18
| -21
| +36
| -32
| -23
|}
|}



Revision as of 13:26, 17 January 2021

Fifthspan examples

Prime → 2 3 5 7 11 13 17 19 23
EDO
Unique fifth
(mapping)
↓ (octave-reduced corresponding primary intervals) ↓
(1/1) (3/2) (5/4) (7/4) (11/8) (13/8) (17/16) (19/16) (23/16)
1edo N/A
2edo 1\2 0 +1 +1 0 +1 +1 0 0 +1
3edo 2\3 0 +1 -1 +1 -1 +1 0 -1 +1
4edo N/A
5edo 3\5 0 +1 -1 -2 -1 -2 0 +2 +1
6edo N/A
7edo 4\7 0 +1 -3 -2 -1 +3 +2 -3 +1
8edo 5\8 0 +1 -1 -2 +4 -2 -3 +2 +4
9edo 5\9 0 +1 -3 -4 -1 +3 +2 +4 +1
10edo N/A
11edo 6\11 0 +1 -3 -4 -1 +5 +2 -5 +1
12edo 7\12 0 +1 +4 -2 +6 -4 -5 -3 +6
13edo 8\13 0 +1 -6 -2 +4 +6 +5 +2 -4
14edo N/A
15edo N/A
16edo 9\16 0 +1 -3 +5 -1 +3 -7 +4 +8
17edo 10\17 0 +1 -8 -2 -6 +8 -5 -3 +6
18edo 11\18 0 +1 -6 +3 +4 -7 -8 +2 +9
19edo 11\19 0 +1 +4 -9 +6 -4 -5 -3 -6
20edo N/A
21edo N/A
22edo 13\22 0 +1 +9 -2 -6 -9 -10 -3 +6
23edo 13\23 0 +1 -3 +5 -8 +3 +9 +4 +8
24edo N/A
25edo N/A
26edo 15\26 0 +1 +4 -9 +6 -4 -12 -10 -6
27edo 16\27 0 +1 +9 -2 -6 +13 -10 -8 +11
28edo N/A
29edo 17\29 0 +1 -8 -14 +11 +8 +7 -3 +6
30edo N/A
31edo 18\31 0 +1 +4 +10 -13 +15 -5 -3 -6
32edo 19\32 0 +1 +14 -2 -11 -14 -15 -8 +11
33edo 19\33 0 +1 +11 -9 +6 -4 -12 -10 -13
34edo N/A
35edo N/A
36edo N/A
37edo 22\37 0 +1 +14 -2 -11 +18 -15 -8 +16
38edo N/A
39edo 23\39 0 +1 -13 -19 -6 -9 +12 +14 -11
40edo 23\40 0 +1 +11 -16 +6 -4 -19 -10 -13
41edo 24\41 0 +1 -8 -14 -18 +20 +7 -3 +6
42edo 25\42 0 +1 +14 -2 -11 -19 -20 -8 +16
43edo 25\43 0 +1 +4 +10 +18 -16 -5 -3 -18
44edo N/A
45edo 26\45 0 +1 +4 -9 +6 +22 +14 +16 -6
46edo 27\46 0 +1 +21 +15 +11 +8 -22 -3 +6
47edo 27\47 0 +1 +11 -16 +13 -4 -19 -10 -13
48edo N/A
49edo 29\49 0 +1 +9 -2 +16 +13 -10 +19 -16
50edo 29\50 0 +1 +4 +10 -13 +15 -24 -22 -6
51edo N/A
52edo N/A
53edo 31\53 0 +1 -8 -14 +23 +20 +7 -3 +18
54edo N/A
55edo 32\55 0 +1 +4 +22 -25 +27 -5 -3 -18
56edo 33\56 0 +1 +26 -19 -6 -9 -27 +14 -11
57edo N/A
58edo N/A
59edo 35\59 0 +1 -18 -2 +21 -14 +17 -8 +11
60edo N/A
61edo 36\61 0 +1 -13 +20 -6 +30 +12 -25 +28
62edo N/A
63edo 37\63 0 +1 -25 +15 +11 +8 +24 -20 +6
64edo 37\64 0 +1 -15 -28 +25 -23 +14 +16 -6
65edo 38\65 0 +1 -8 -26 -30 +32 +7 -3 +18
66edo N/A
67edo 39\67 0 +1 +4 +22 +30 -28 -5 -3 -18
68edo N/A
69edo 40\69 0 +1 +4 +29 -13 +15 -24 -22 -6
70edo 41\70 0 +1 +33 +27 -18 -21 -34 -3 -23
71edo 42\71 0 +1 +9 -24 +16 +35 -10 -30 +33
72edo N/A
73edo 43\73 0 +1 -30 -19 -6 -9 +29 +14 -11
74edo 43\74 0 +1 +4 +10 +18 -16 -36 -34 +25
75edo 44\75 0 +1 +21 -31 +11 +37 -22 +26 +6
76edo N/A
77edo 45\77 0 +1 -8 -26 +35 +32 +7 -3 +18
78edo N/A
79edo 46\79 0 +1 +16 +22 -37 -28 -5 -3 -18
80edo 47\80 0 +1 +38 +15 +11 +8 -39 -20 +6
81edo 47\81 0 +1 +4 +10 -13 +15 +26 +28 -6
82edo N/A
83edo 49\83 0 +1 -13 +20 -6 -31 +12 +36 -33
84edo N/A
85edo N/A
86edo N/A
87edo N/A
88edo 51\88 0 +1 +4 +29 -32 +34 -24 -22 -6
89edo 52\89 0 +1 -8 -26 -42 +32 +7 -3 +30
90edo 53\90 0 +1 +43 -19 -23 -9 -44 +14 -11
91edo 53\91 0 +1 +16 +34 +42 -40 -5 -3 -30
92edo N/A
93edo N/A
94edo 55\94 0 +1 -8 -14 +23 +20 -46 -3 -35
95edo 56\95 0 +1 +26 +37 -6 +47 -27 +14 +45
96edo N/A
97edo 57\97 0 +1 -42 +32 +11 +8 -39 -20 +6
98edo 57\98 0 +1 +4 -33 -25 +27 -5 -46 +37
99edo 58\99 0 +1 -37 -43 -18 -21 +36 -32 -23

EDO information

Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo". Script error: No such module "primes_in_edo".

Separate mod steps

Shown on the example of 17edo.

All fifthspans are given as positive values. (This can be transformed into mixed mode by subtracting 17 from all values > 17/2 == 8.5)

prime 2 prime 3 prime 5 prime 7 prime 11 prime 13 prime 17 prime 19 prime 23
Error absolute (¢) 0.0 +3.9 -33.4 +19.4 +13.4 +6.5 -34.3 -15.2 +7.0
relative (%) 0 +6 -47 +27 +19 +9 -49 -21 +10
Mapping patent val 17 27 39 48 59 63 69 72 77
~ (mod 17) 0 10 5 14 8 12 1 4 9
fifthspan (steps) 0 1 9 15 11 8 12 14 6
fifthspan explained - 10= 1 *10 %17 5= 9 *10 %17 14= 15 *10 %17 8= 11 *10 %17 12= 8 *10 %17 1= 12 *10 %17 4= 14 *10 %17 9= 6 *10 %17
1= 10 *12 %17 9= 5 *12 %17 15= 14 *12 %17 11= 8 *12 %17 8= 12 *12 %17 12= 1 *12 %17 14= 4 *12 %17 6= 9 *12 %17

Fifthspans of 17edo steps

step span
0 0
1 12
2 7
3 2
4 14
5 9
6 4
7 16
8 11
9 6
10 1
11 13
12 8
13 3
14 15
15 10
16 5