This page lists every MOS scale to occur in each EDO from 5 to 30.
5edo
These are all moment of symmetry scales in 5edo.
Single-period MOS scales
Generators 3\5 and 2\5
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┤
|
1L 1s
|
3, 2
|
3:2
|
├┼─┼─┤
|
2L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┤
|
5edo
|
1, 1
|
1:1
|
Generators 4\5 and 1\5
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┤
|
1L 1s
|
4, 1
|
4:1
|
├──┼┼┤
|
1L 2s
|
3, 1
|
3:1
|
├─┼┼┼┤
|
1L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┤
|
5edo
|
1, 1
|
1:1
|
6edo
These are all moment of symmetry scales in 6edo.
Single-period MOS scales
Generators 4\6 and 2\6
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼─┤
|
1L 1s
|
4, 2
|
2:1
|
├─┼─┼─┤
|
3edo
|
2, 2
|
1:1
|
Generators 5\6 and 1\6
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼┤
|
1L 1s
|
5, 1
|
5:1
|
├───┼┼┤
|
1L 2s
|
4, 1
|
4:1
|
├──┼┼┼┤
|
1L 3s
|
3, 1
|
3:1
|
├─┼┼┼┼┤
|
1L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┤
|
6edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 2\6 and 1\6
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┤
|
2L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┤
|
6edo
|
1, 1
|
1:1
|
7edo
These are all moment of symmetry scales in 7edo.
Single-period MOS scales
Generators 4\7 and 3\7
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼──┤
|
1L 1s
|
4, 3
|
4:3
|
├┼──┼──┤
|
2L 1s
|
3, 1
|
3:1
|
├┼┼─┼┼─┤
|
2L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┤
|
7edo
|
1, 1
|
1:1
|
Generators 5\7 and 2\7
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼─┤
|
1L 1s
|
5, 2
|
5:2
|
├──┼─┼─┤
|
1L 2s
|
3, 2
|
3:2
|
├┼─┼─┼─┤
|
3L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┤
|
7edo
|
1, 1
|
1:1
|
Generators 6\7 and 1\7
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼┤
|
1L 1s
|
6, 1
|
6:1
|
├────┼┼┤
|
1L 2s
|
5, 1
|
5:1
|
├───┼┼┼┤
|
1L 3s
|
4, 1
|
4:1
|
├──┼┼┼┼┤
|
1L 4s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┤
|
7edo
|
1, 1
|
1:1
|
8edo
These are all moment of symmetry scales in 8edo.
Single-period MOS scales
Generators 5\8 and 3\8
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼──┤
|
1L 1s
|
5, 3
|
5:3
|
├─┼──┼──┤
|
2L 1s
|
3, 2
|
3:2
|
├─┼─┼┼─┼┤
|
3L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┤
|
8edo
|
1, 1
|
1:1
|
Generators 6\8 and 2\8
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼─┤
|
1L 1s
|
6, 2
|
3:1
|
├───┼─┼─┤
|
1L 2s
|
4, 2
|
2:1
|
├─┼─┼─┼─┤
|
4edo
|
2, 2
|
1:1
|
Generators 7\8 and 1\8
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼┤
|
1L 1s
|
7, 1
|
7:1
|
├─────┼┼┤
|
1L 2s
|
6, 1
|
6:1
|
├────┼┼┼┤
|
1L 3s
|
5, 1
|
5:1
|
├───┼┼┼┼┤
|
1L 4s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┤
|
8edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 3\8 and 1\8
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┤
|
2L 2s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┤
|
2L 4s (malic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┤
|
8edo
|
1, 1
|
1:1
|
9edo
These are all moment of symmetry scales in 9edo.
Single-period MOS scales
Generators 5\9 and 4\9
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼───┤
|
1L 1s
|
5, 4
|
5:4
|
├┼───┼───┤
|
2L 1s
|
4, 1
|
4:1
|
├┼┼──┼┼──┤
|
2L 3s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┤
|
2L 5s (antidiatonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┤
|
9edo
|
1, 1
|
1:1
|
Generators 6\9 and 3\9
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼──┤
|
1L 1s
|
6, 3
|
2:1
|
├──┼──┼──┤
|
3edo
|
3, 3
|
1:1
|
Generators 7\9 and 2\9
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼─┤
|
1L 1s
|
7, 2
|
7:2
|
├────┼─┼─┤
|
1L 2s
|
5, 2
|
5:2
|
├──┼─┼─┼─┤
|
1L 3s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┤
|
4L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┤
|
9edo
|
1, 1
|
1:1
|
Generators 8\9 and 1\9
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼┤
|
1L 1s
|
8, 1
|
8:1
|
├──────┼┼┤
|
1L 2s
|
7, 1
|
7:1
|
├─────┼┼┼┤
|
1L 3s
|
6, 1
|
6:1
|
├────┼┼┼┼┤
|
1L 4s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┤
|
9edo
|
1, 1
|
1:1
|
Multi-period MOS scales
3 periods
Generators 2\9 and 1\9
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┤
|
3L 3s (triwood)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┤
|
9edo
|
1, 1
|
1:1
|
10edo
These are all moment of symmetry scales in 10edo.
Single-period MOS scales
Generators 6\10 and 4\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼───┤
|
1L 1s
|
6, 4
|
3:2
|
├─┼───┼───┤
|
2L 1s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┤
|
5edo
|
2, 2
|
1:1
|
Generators 7\10 and 3\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼──┤
|
1L 1s
|
7, 3
|
7:3
|
├───┼──┼──┤
|
1L 2s
|
4, 3
|
4:3
|
├┼──┼──┼──┤
|
3L 1s
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┤
|
3L 4s (mosh)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┤
|
10edo
|
1, 1
|
1:1
|
Generators 8\10 and 2\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼─┤
|
1L 1s
|
8, 2
|
4:1
|
├─────┼─┼─┤
|
1L 2s
|
6, 2
|
3:1
|
├───┼─┼─┼─┤
|
1L 3s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┤
|
5edo
|
2, 2
|
1:1
|
Generators 9\10 and 1\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼┤
|
1L 1s
|
9, 1
|
9:1
|
├───────┼┼┤
|
1L 2s
|
8, 1
|
8:1
|
├──────┼┼┼┤
|
1L 3s
|
7, 1
|
7:1
|
├─────┼┼┼┼┤
|
1L 4s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┤
|
10edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 3\10 and 2\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┼──┼─┤
|
2L 2s
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┤
|
4L 2s (citric)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┤
|
10edo
|
1, 1
|
1:1
|
Generators 4\10 and 1\10
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┼───┼┤
|
2L 2s
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┤
|
2L 4s (malic)
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┤
|
2L 6s (subaric)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┤
|
10edo
|
1, 1
|
1:1
|
11edo
These are all moment of symmetry scales in 11edo.
Single-period MOS scales
Generators 6\11 and 5\11
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼────┤
|
1L 1s
|
6, 5
|
6:5
|
├┼────┼────┤
|
2L 1s
|
5, 1
|
5:1
|
├┼┼───┼┼───┤
|
2L 3s
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼──┤
|
2L 5s (antidiatonic)
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼─┤
|
2L 7s (balzano)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┤
|
11edo
|
1, 1
|
1:1
|
Generators 7\11 and 4\11
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼───┤
|
1L 1s
|
7, 4
|
7:4
|
├──┼───┼───┤
|
2L 1s
|
4, 3
|
4:3
|
├──┼──┼┼──┼┤
|
3L 2s
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┤
|
3L 5s (checkertonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┤
|
11edo
|
1, 1
|
1:1
|
Generators 8\11 and 3\11
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼──┤
|
1L 1s
|
8, 3
|
8:3
|
├────┼──┼──┤
|
1L 2s
|
5, 3
|
5:3
|
├─┼──┼──┼──┤
|
3L 1s
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┤
|
4L 3s (smitonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┤
|
11edo
|
1, 1
|
1:1
|
Generators 9\11 and 2\11
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼─┤
|
1L 1s
|
9, 2
|
9:2
|
├──────┼─┼─┤
|
1L 2s
|
7, 2
|
7:2
|
├────┼─┼─┼─┤
|
1L 3s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┤
|
1L 4s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┤
|
5L 1s (machinoid)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┤
|
11edo
|
1, 1
|
1:1
|
Generators 10\11 and 1\11
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼┤
|
1L 1s
|
10, 1
|
10:1
|
├────────┼┼┤
|
1L 2s
|
9, 1
|
9:1
|
├───────┼┼┼┤
|
1L 3s
|
8, 1
|
8:1
|
├──────┼┼┼┼┤
|
1L 4s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┤
|
11edo
|
1, 1
|
1:1
|
12edo
These are all moment of symmetry scales in 12edo.
Single-period MOS scales
Generators 7\12 and 5\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼────┤
|
1L 1s
|
7, 5
|
7:5
|
├─┼────┼────┤
|
2L 1s
|
5, 2
|
5:2
|
├─┼─┼──┼─┼──┤
|
2L 3s
|
3, 2
|
3:2
|
├─┼─┼─┼┼─┼─┼┤
|
5L 2s (diatonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┤
|
12edo
|
1, 1
|
1:1
|
Generators 8\12 and 4\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼───┤
|
1L 1s
|
8, 4
|
2:1
|
├───┼───┼───┤
|
3edo
|
4, 4
|
1:1
|
Generators 9\12 and 3\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼──┤
|
1L 1s
|
9, 3
|
3:1
|
├─────┼──┼──┤
|
1L 2s
|
6, 3
|
2:1
|
├──┼──┼──┼──┤
|
4edo
|
3, 3
|
1:1
|
Generators 10\12 and 2\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼─┤
|
1L 1s
|
10, 2
|
5:1
|
├───────┼─┼─┤
|
1L 2s
|
8, 2
|
4:1
|
├─────┼─┼─┼─┤
|
1L 3s
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┤
|
1L 4s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┤
|
6edo
|
2, 2
|
1:1
|
Generators 11\12 and 1\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼┤
|
1L 1s
|
11, 1
|
11:1
|
├─────────┼┼┤
|
1L 2s
|
10, 1
|
10:1
|
├────────┼┼┼┤
|
1L 3s
|
9, 1
|
9:1
|
├───────┼┼┼┼┤
|
1L 4s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┤
|
12edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 4\12 and 2\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼─┼───┼─┤
|
2L 2s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┤
|
6edo
|
2, 2
|
1:1
|
Generators 5\12 and 1\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼┼────┼┤
|
2L 2s
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┤
|
2L 4s (malic)
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┤
|
2L 6s (subaric)
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┤
|
2L 8s (jaric)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┤
|
12edo
|
1, 1
|
1:1
|
3 periods
Generators 3\12 and 1\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┼──┼┤
|
3L 3s (triwood)
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┤
|
3L 6s (tcherepnin)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┤
|
12edo
|
1, 1
|
1:1
|
4 periods
Generators 2\12 and 1\12
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┤
|
4L 4s (tetrawood)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┤
|
12edo
|
1, 1
|
1:1
|
13edo
These are all moment of symmetry scales in 13edo.
Single-period MOS scales
Generators 7\13 and 6\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼─────┤
|
1L 1s
|
7, 6
|
7:6
|
├┼─────┼─────┤
|
2L 1s
|
6, 1
|
6:1
|
├┼┼────┼┼────┤
|
2L 3s
|
5, 1
|
5:1
|
├┼┼┼───┼┼┼───┤
|
2L 5s (antidiatonic)
|
4, 1
|
4:1
|
├┼┼┼┼──┼┼┼┼──┤
|
2L 7s (balzano)
|
3, 1
|
3:1
|
├┼┼┼┼┼─┼┼┼┼┼─┤
|
2L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
Generators 8\13 and 5\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼────┤
|
1L 1s
|
8, 5
|
8:5
|
├──┼────┼────┤
|
2L 1s
|
5, 3
|
5:3
|
├──┼──┼─┼──┼─┤
|
3L 2s
|
3, 2
|
3:2
|
├┼─┼┼─┼─┼┼─┼─┤
|
5L 3s (oneirotonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
Generators 9\13 and 4\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼───┤
|
1L 1s
|
9, 4
|
9:4
|
├────┼───┼───┤
|
1L 2s
|
5, 4
|
5:4
|
├┼───┼───┼───┤
|
3L 1s
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┤
|
3L 4s (mosh)
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┤
|
3L 7s (sephiroid)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
Generators 10\13 and 3\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼──┤
|
1L 1s
|
10, 3
|
10:3
|
├──────┼──┼──┤
|
1L 2s
|
7, 3
|
7:3
|
├───┼──┼──┼──┤
|
1L 3s
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┤
|
4L 1s
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┤
|
4L 5s (gramitonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
Generators 11\13 and 2\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼─┤
|
1L 1s
|
11, 2
|
11:2
|
├────────┼─┼─┤
|
1L 2s
|
9, 2
|
9:2
|
├──────┼─┼─┼─┤
|
1L 3s
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┤
|
1L 4s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┤
|
6L 1s (archaeotonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
Generators 12\13 and 1\13
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼┤
|
1L 1s
|
12, 1
|
12:1
|
├──────────┼┼┤
|
1L 2s
|
11, 1
|
11:1
|
├─────────┼┼┼┤
|
1L 3s
|
10, 1
|
10:1
|
├────────┼┼┼┼┤
|
1L 4s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┤
|
13edo
|
1, 1
|
1:1
|
14edo
These are all moment of symmetry scales in 14edo.
Single-period MOS scales
Generators 8\14 and 6\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼─────┤
|
1L 1s
|
8, 6
|
4:3
|
├─┼─────┼─────┤
|
2L 1s
|
6, 2
|
3:1
|
├─┼─┼───┼─┼───┤
|
2L 3s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┤
|
7edo
|
2, 2
|
1:1
|
Generators 9\14 and 5\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼────┤
|
1L 1s
|
9, 5
|
9:5
|
├───┼────┼────┤
|
2L 1s
|
5, 4
|
5:4
|
├───┼───┼┼───┼┤
|
3L 2s
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┤
|
3L 5s (checkertonic)
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┤
|
3L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
Generators 10\14 and 4\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼───┤
|
1L 1s
|
10, 4
|
5:2
|
├─────┼───┼───┤
|
1L 2s
|
6, 4
|
3:2
|
├─┼───┼───┼───┤
|
3L 1s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┤
|
7edo
|
2, 2
|
1:1
|
Generators 11\14 and 3\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼──┤
|
1L 1s
|
11, 3
|
11:3
|
├───────┼──┼──┤
|
1L 2s
|
8, 3
|
8:3
|
├────┼──┼──┼──┤
|
1L 3s
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┤
|
4L 1s
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┤
|
5L 4s (semiquartal)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
Generators 12\14 and 2\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼─┤
|
1L 1s
|
12, 2
|
6:1
|
├─────────┼─┼─┤
|
1L 2s
|
10, 2
|
5:1
|
├───────┼─┼─┼─┤
|
1L 3s
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┤
|
1L 4s
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┤
|
7edo
|
2, 2
|
1:1
|
Generators 13\14 and 1\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼┤
|
1L 1s
|
13, 1
|
13:1
|
├───────────┼┼┤
|
1L 2s
|
12, 1
|
12:1
|
├──────────┼┼┼┤
|
1L 3s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┤
|
1L 4s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 4\14 and 3\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼──┼───┼──┤
|
2L 2s
|
4, 3
|
4:3
|
├┼──┼──┼┼──┼──┤
|
4L 2s (citric)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼┼─┼┼─┤
|
4L 6s (lime)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
Generators 5\14 and 2\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼─┼────┼─┤
|
2L 2s
|
5, 2
|
5:2
|
├──┼─┼─┼──┼─┼─┤
|
2L 4s (malic)
|
3, 2
|
3:2
|
├┼─┼─┼─┼┼─┼─┼─┤
|
6L 2s (ekic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
Generators 6\14 and 1\14
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼┼─────┼┤
|
2L 2s
|
6, 1
|
6:1
|
├────┼┼┼────┼┼┤
|
2L 4s (malic)
|
5, 1
|
5:1
|
├───┼┼┼┼───┼┼┼┤
|
2L 6s (subaric)
|
4, 1
|
4:1
|
├──┼┼┼┼┼──┼┼┼┼┤
|
2L 8s (jaric)
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼─┼┼┼┼┼┤
|
2L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
14edo
|
1, 1
|
1:1
|
15edo
These are all moment of symmetry scales in 15edo.
Single-period MOS scales
Generators 8\15 and 7\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼──────┤
|
1L 1s
|
8, 7
|
8:7
|
├┼──────┼──────┤
|
2L 1s
|
7, 1
|
7:1
|
├┼┼─────┼┼─────┤
|
2L 3s
|
6, 1
|
6:1
|
├┼┼┼────┼┼┼────┤
|
2L 5s (antidiatonic)
|
5, 1
|
5:1
|
├┼┼┼┼───┼┼┼┼───┤
|
2L 7s (balzano)
|
4, 1
|
4:1
|
├┼┼┼┼┼──┼┼┼┼┼──┤
|
2L 9s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼─┼┼┼┼┼┼─┤
|
2L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
Generators 9\15 and 6\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼─────┤
|
1L 1s
|
9, 6
|
3:2
|
├──┼─────┼─────┤
|
2L 1s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┤
|
5edo
|
3, 3
|
1:1
|
Generators 10\15 and 5\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼────┤
|
1L 1s
|
10, 5
|
2:1
|
├────┼────┼────┤
|
3edo
|
5, 5
|
1:1
|
Generators 11\15 and 4\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼───┤
|
1L 1s
|
11, 4
|
11:4
|
├──────┼───┼───┤
|
1L 2s
|
7, 4
|
7:4
|
├──┼───┼───┼───┤
|
3L 1s
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┤
|
4L 3s (smitonic)
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┤
|
4L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
Generators 12\15 and 3\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼──┤
|
1L 1s
|
12, 3
|
4:1
|
├────────┼──┼──┤
|
1L 2s
|
9, 3
|
3:1
|
├─────┼──┼──┼──┤
|
1L 3s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┤
|
5edo
|
3, 3
|
1:1
|
Generators 13\15 and 2\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼─┤
|
1L 1s
|
13, 2
|
13:2
|
├──────────┼─┼─┤
|
1L 2s
|
11, 2
|
11:2
|
├────────┼─┼─┼─┤
|
1L 3s
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┤
|
1L 4s
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┤
|
7L 1s (pine)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
Generators 14\15 and 1\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼┤
|
1L 1s
|
14, 1
|
14:1
|
├────────────┼┼┤
|
1L 2s
|
13, 1
|
13:1
|
├───────────┼┼┼┤
|
1L 3s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┤
|
1L 4s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
Multi-period MOS scales
3 periods
Generators 3\15 and 2\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┼──┼─┼──┼─┤
|
3L 3s (triwood)
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼┼─┼─┤
|
6L 3s (hyrulic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
Generators 4\15 and 1\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┼───┼┼───┼┤
|
3L 3s (triwood)
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼──┼┼┤
|
3L 6s (tcherepnin)
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
3L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
5 periods
Generators 2\15 and 1\15
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┤
|
5L 5s (pentawood)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
15edo
|
1, 1
|
1:1
|
16edo
These are all moment of symmetry scales in 16edo.
Single-period MOS scales
Generators 9\16 and 7\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼──────┤
|
1L 1s
|
9, 7
|
9:7
|
├─┼──────┼──────┤
|
2L 1s
|
7, 2
|
7:2
|
├─┼─┼────┼─┼────┤
|
2L 3s
|
5, 2
|
5:2
|
├─┼─┼─┼──┼─┼─┼──┤
|
2L 5s (antidiatonic)
|
3, 2
|
3:2
|
├─┼─┼─┼─┼┼─┼─┼─┼┤
|
7L 2s (armotonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
Generators 10\16 and 6\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼─────┤
|
1L 1s
|
10, 6
|
5:3
|
├───┼─────┼─────┤
|
2L 1s
|
6, 4
|
3:2
|
├───┼───┼─┼───┼─┤
|
3L 2s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┤
|
8edo
|
2, 2
|
1:1
|
Generators 11\16 and 5\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼────┤
|
1L 1s
|
11, 5
|
11:5
|
├─────┼────┼────┤
|
1L 2s
|
6, 5
|
6:5
|
├┼────┼────┼────┤
|
3L 1s
|
5, 1
|
5:1
|
├┼┼───┼┼───┼┼───┤
|
3L 4s (mosh)
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼──┼┼┼──┤
|
3L 7s (sephiroid)
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼─┼┼┼┼─┤
|
3L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
Generators 12\16 and 4\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼───┤
|
1L 1s
|
12, 4
|
3:1
|
├───────┼───┼───┤
|
1L 2s
|
8, 4
|
2:1
|
├───┼───┼───┼───┤
|
4edo
|
4, 4
|
1:1
|
Generators 13\16 and 3\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼──┤
|
1L 1s
|
13, 3
|
13:3
|
├─────────┼──┼──┤
|
1L 2s
|
10, 3
|
10:3
|
├──────┼──┼──┼──┤
|
1L 3s
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┤
|
1L 4s
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┤
|
5L 1s (machinoid)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
5L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
Generators 14\16 and 2\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼─┤
|
1L 1s
|
14, 2
|
7:1
|
├───────────┼─┼─┤
|
1L 2s
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┤
|
1L 3s
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┤
|
1L 4s
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┤
|
8edo
|
2, 2
|
1:1
|
Generators 15\16 and 1\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼┤
|
1L 1s
|
15, 1
|
15:1
|
├─────────────┼┼┤
|
1L 2s
|
14, 1
|
14:1
|
├────────────┼┼┼┤
|
1L 3s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┤
|
1L 4s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 5\16 and 3\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼──┼────┼──┤
|
2L 2s
|
5, 3
|
5:3
|
├─┼──┼──┼─┼──┼──┤
|
4L 2s (citric)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼─┼┼─┼┤
|
6L 4s (lemon)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
Generators 6\16 and 2\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼─┼─────┼─┤
|
2L 2s
|
6, 2
|
3:1
|
├───┼─┼─┼───┼─┼─┤
|
2L 4s (malic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┤
|
8edo
|
2, 2
|
1:1
|
Generators 7\16 and 1\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼┼──────┼┤
|
2L 2s
|
7, 1
|
7:1
|
├─────┼┼┼─────┼┼┤
|
2L 4s (malic)
|
6, 1
|
6:1
|
├────┼┼┼┼────┼┼┼┤
|
2L 6s (subaric)
|
5, 1
|
5:1
|
├───┼┼┼┼┼───┼┼┼┼┤
|
2L 8s (jaric)
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼──┼┼┼┼┼┤
|
2L 10s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼─┼┼┼┼┼┼┤
|
2L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
4 periods
Generators 3\16 and 1\16
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┼──┼┼──┼┤
|
4L 4s (tetrawood)
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
4L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
16edo
|
1, 1
|
1:1
|
17edo
These are all moment of symmetry scales in 17edo.
Single-period MOS scales
Generators 9\17 and 8\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼───────┤
|
1L 1s
|
9, 8
|
9:8
|
├┼───────┼───────┤
|
2L 1s
|
8, 1
|
8:1
|
├┼┼──────┼┼──────┤
|
2L 3s
|
7, 1
|
7:1
|
├┼┼┼─────┼┼┼─────┤
|
2L 5s (antidiatonic)
|
6, 1
|
6:1
|
├┼┼┼┼────┼┼┼┼────┤
|
2L 7s (balzano)
|
5, 1
|
5:1
|
├┼┼┼┼┼───┼┼┼┼┼───┤
|
2L 9s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼──┼┼┼┼┼┼──┤
|
2L 11s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼─┼┼┼┼┼┼┼─┤
|
2L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 10\17 and 7\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼──────┤
|
1L 1s
|
10, 7
|
10:7
|
├──┼──────┼──────┤
|
2L 1s
|
7, 3
|
7:3
|
├──┼──┼───┼──┼───┤
|
2L 3s
|
4, 3
|
4:3
|
├──┼──┼──┼┼──┼──┼┤
|
5L 2s (diatonic)
|
3, 1
|
3:1
|
├─┼┼─┼┼─┼┼┼─┼┼─┼┼┤
|
5L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 11\17 and 6\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼─────┤
|
1L 1s
|
11, 6
|
11:6
|
├────┼─────┼─────┤
|
2L 1s
|
6, 5
|
6:5
|
├────┼────┼┼────┼┤
|
3L 2s
|
5, 1
|
5:1
|
├───┼┼───┼┼┼───┼┼┤
|
3L 5s (checkertonic)
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼┼──┼┼┼┤
|
3L 8s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
3L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 12\17 and 5\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼────┤
|
1L 1s
|
12, 5
|
12:5
|
├──────┼────┼────┤
|
1L 2s
|
7, 5
|
7:5
|
├─┼────┼────┼────┤
|
3L 1s
|
5, 2
|
5:2
|
├─┼─┼──┼─┼──┼─┼──┤
|
3L 4s (mosh)
|
3, 2
|
3:2
|
├─┼─┼─┼┼─┼─┼┼─┼─┼┤
|
7L 3s (dicoid)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 13\17 and 4\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼───┤
|
1L 1s
|
13, 4
|
13:4
|
├────────┼───┼───┤
|
1L 2s
|
9, 4
|
9:4
|
├────┼───┼───┼───┤
|
1L 3s
|
5, 4
|
5:4
|
├┼───┼───┼───┼───┤
|
4L 1s
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┼┼──┤
|
4L 5s (gramitonic)
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┼┼┼─┤
|
4L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 14\17 and 3\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼──┤
|
1L 1s
|
14, 3
|
14:3
|
├──────────┼──┼──┤
|
1L 2s
|
11, 3
|
11:3
|
├───────┼──┼──┼──┤
|
1L 3s
|
8, 3
|
8:3
|
├────┼──┼──┼──┼──┤
|
1L 4s
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼──┤
|
5L 1s (machinoid)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
6L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 15\17 and 2\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼─┤
|
1L 1s
|
15, 2
|
15:2
|
├────────────┼─┼─┤
|
1L 2s
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┤
|
1L 3s
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┤
|
1L 4s
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┤
|
8L 1s (subneutralic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
Generators 16\17 and 1\17
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼┤
|
1L 1s
|
16, 1
|
16:1
|
├──────────────┼┼┤
|
1L 2s
|
15, 1
|
15:1
|
├─────────────┼┼┼┤
|
1L 3s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┤
|
1L 4s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
17edo
|
1, 1
|
1:1
|
18edo
These are all moment of symmetry scales in 18edo.
Single-period MOS scales
Generators 10\18 and 8\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼───────┤
|
1L 1s
|
10, 8
|
5:4
|
├─┼───────┼───────┤
|
2L 1s
|
8, 2
|
4:1
|
├─┼─┼─────┼─┼─────┤
|
2L 3s
|
6, 2
|
3:1
|
├─┼─┼─┼───┼─┼─┼───┤
|
2L 5s (antidiatonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9edo
|
2, 2
|
1:1
|
Generators 11\18 and 7\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼──────┤
|
1L 1s
|
11, 7
|
11:7
|
├───┼──────┼──────┤
|
2L 1s
|
7, 4
|
7:4
|
├───┼───┼──┼───┼──┤
|
3L 2s
|
4, 3
|
4:3
|
├┼──┼┼──┼──┼┼──┼──┤
|
5L 3s (oneirotonic)
|
3, 1
|
3:1
|
├┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┤
|
5L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
Generators 12\18 and 6\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼─────┤
|
1L 1s
|
12, 6
|
2:1
|
├─────┼─────┼─────┤
|
3edo
|
6, 6
|
1:1
|
Generators 13\18 and 5\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼────┤
|
1L 1s
|
13, 5
|
13:5
|
├───────┼────┼────┤
|
1L 2s
|
8, 5
|
8:5
|
├──┼────┼────┼────┤
|
3L 1s
|
5, 3
|
5:3
|
├──┼──┼─┼──┼─┼──┼─┤
|
4L 3s (smitonic)
|
3, 2
|
3:2
|
├┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
7L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
Generators 14\18 and 4\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼───┤
|
1L 1s
|
14, 4
|
7:2
|
├─────────┼───┼───┤
|
1L 2s
|
10, 4
|
5:2
|
├─────┼───┼───┼───┤
|
1L 3s
|
6, 4
|
3:2
|
├─┼───┼───┼───┼───┤
|
4L 1s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9edo
|
2, 2
|
1:1
|
Generators 15\18 and 3\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼──┤
|
1L 1s
|
15, 3
|
5:1
|
├───────────┼──┼──┤
|
1L 2s
|
12, 3
|
4:1
|
├────────┼──┼──┼──┤
|
1L 3s
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼──┤
|
1L 4s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┤
|
6edo
|
3, 3
|
1:1
|
Generators 16\18 and 2\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼─┤
|
1L 1s
|
16, 2
|
8:1
|
├─────────────┼─┼─┤
|
1L 2s
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┤
|
1L 3s
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┤
|
1L 4s
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9edo
|
2, 2
|
1:1
|
Generators 17\18 and 1\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼┤
|
1L 1s
|
17, 1
|
17:1
|
├───────────────┼┼┤
|
1L 2s
|
16, 1
|
16:1
|
├──────────────┼┼┼┤
|
1L 3s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┤
|
1L 4s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 5\18 and 4\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼───┼────┼───┤
|
2L 2s
|
5, 4
|
5:4
|
├┼───┼───┼┼───┼───┤
|
4L 2s (citric)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼┼──┼┼──┤
|
4L 6s (lime)
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┤
|
4L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
Generators 6\18 and 3\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼──┼─────┼──┤
|
2L 2s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┤
|
6edo
|
3, 3
|
1:1
|
Generators 7\18 and 2\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼─┼──────┼─┤
|
2L 2s
|
7, 2
|
7:2
|
├────┼─┼─┼────┼─┼─┤
|
2L 4s (malic)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼──┼─┼─┼─┤
|
2L 6s (subaric)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼┼─┼─┼─┼─┤
|
8L 2s (taric)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
Generators 8\18 and 1\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼┼───────┼┤
|
2L 2s
|
8, 1
|
8:1
|
├──────┼┼┼──────┼┼┤
|
2L 4s (malic)
|
7, 1
|
7:1
|
├─────┼┼┼┼─────┼┼┼┤
|
2L 6s (subaric)
|
6, 1
|
6:1
|
├────┼┼┼┼┼────┼┼┼┼┤
|
2L 8s (jaric)
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼───┼┼┼┼┼┤
|
2L 10s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼──┼┼┼┼┼┼┤
|
2L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┤
|
2L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
3 periods
Generators 4\18 and 2\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼─┼───┼─┼───┼─┤
|
3L 3s (triwood)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9edo
|
2, 2
|
1:1
|
Generators 5\18 and 1\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼┼────┼┼────┼┤
|
3L 3s (triwood)
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┼───┼┼┤
|
3L 6s (tcherepnin)
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┼──┼┼┼┤
|
3L 9s
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
3L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
6 periods
Generators 2\18 and 1\18
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
6L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
18edo
|
1, 1
|
1:1
|
19edo
These are all moment of symmetry scales in 19edo.
Single-period MOS scales
Generators 10\19 and 9\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼────────┤
|
1L 1s
|
10, 9
|
10:9
|
├┼────────┼────────┤
|
2L 1s
|
9, 1
|
9:1
|
├┼┼───────┼┼───────┤
|
2L 3s
|
8, 1
|
8:1
|
├┼┼┼──────┼┼┼──────┤
|
2L 5s (antidiatonic)
|
7, 1
|
7:1
|
├┼┼┼┼─────┼┼┼┼─────┤
|
2L 7s (balzano)
|
6, 1
|
6:1
|
├┼┼┼┼┼────┼┼┼┼┼────┤
|
2L 9s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼───┼┼┼┼┼┼───┤
|
2L 11s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼──┼┼┼┼┼┼┼──┤
|
2L 13s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┤
|
2L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 11\19 and 8\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼───────┤
|
1L 1s
|
11, 8
|
11:8
|
├──┼───────┼───────┤
|
2L 1s
|
8, 3
|
8:3
|
├──┼──┼────┼──┼────┤
|
2L 3s
|
5, 3
|
5:3
|
├──┼──┼──┼─┼──┼──┼─┤
|
5L 2s (diatonic)
|
3, 2
|
3:2
|
├┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┤
|
7L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 12\19 and 7\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼──────┤
|
1L 1s
|
12, 7
|
12:7
|
├────┼──────┼──────┤
|
2L 1s
|
7, 5
|
7:5
|
├────┼────┼─┼────┼─┤
|
3L 2s
|
5, 2
|
5:2
|
├──┼─┼──┼─┼─┼──┼─┼─┤
|
3L 5s (checkertonic)
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼─┼┼─┼─┼─┤
|
8L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 13\19 and 6\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼─────┤
|
1L 1s
|
13, 6
|
13:6
|
├──────┼─────┼─────┤
|
1L 2s
|
7, 6
|
7:6
|
├┼─────┼─────┼─────┤
|
3L 1s
|
6, 1
|
6:1
|
├┼┼────┼┼────┼┼────┤
|
3L 4s (mosh)
|
5, 1
|
5:1
|
├┼┼┼───┼┼┼───┼┼┼───┤
|
3L 7s (sephiroid)
|
4, 1
|
4:1
|
├┼┼┼┼──┼┼┼┼──┼┼┼┼──┤
|
3L 10s
|
3, 1
|
3:1
|
├┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┤
|
3L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 14\19 and 5\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼────┤
|
1L 1s
|
14, 5
|
14:5
|
├────────┼────┼────┤
|
1L 2s
|
9, 5
|
9:5
|
├───┼────┼────┼────┤
|
3L 1s
|
5, 4
|
5:4
|
├───┼───┼┼───┼┼───┼┤
|
4L 3s (smitonic)
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┼──┼┼┤
|
4L 7s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
4L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 15\19 and 4\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼───┤
|
1L 1s
|
15, 4
|
15:4
|
├──────────┼───┼───┤
|
1L 2s
|
11, 4
|
11:4
|
├──────┼───┼───┼───┤
|
1L 3s
|
7, 4
|
7:4
|
├──┼───┼───┼───┼───┤
|
4L 1s
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┼──┼┤
|
5L 4s (semiquartal)
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
5L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 16\19 and 3\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼──┤
|
1L 1s
|
16, 3
|
16:3
|
├────────────┼──┼──┤
|
1L 2s
|
13, 3
|
13:3
|
├─────────┼──┼──┼──┤
|
1L 3s
|
10, 3
|
10:3
|
├──────┼──┼──┼──┼──┤
|
1L 4s
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┼──┤
|
6L 1s (archaeotonic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
6L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 17\19 and 2\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼─┤
|
1L 1s
|
17, 2
|
17:2
|
├──────────────┼─┼─┤
|
1L 2s
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┤
|
1L 3s
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┤
|
1L 4s
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
9L 1s (sinatonic)
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
Generators 18\19 and 1\19
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼┤
|
1L 1s
|
18, 1
|
18:1
|
├────────────────┼┼┤
|
1L 2s
|
17, 1
|
17:1
|
├───────────────┼┼┼┤
|
1L 3s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┤
|
1L 4s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
19edo
|
1, 1
|
1:1
|
20edo
These are all moment of symmetry scales in 20edo.
Single-period MOS scales
Generators 11\20 and 9\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼────────┤
|
1L 1s
|
11, 9
|
11:9
|
├─┼────────┼────────┤
|
2L 1s
|
9, 2
|
9:2
|
├─┼─┼──────┼─┼──────┤
|
2L 3s
|
7, 2
|
7:2
|
├─┼─┼─┼────┼─┼─┼────┤
|
2L 5s (antidiatonic)
|
5, 2
|
5:2
|
├─┼─┼─┼─┼──┼─┼─┼─┼──┤
|
2L 7s (balzano)
|
3, 2
|
3:2
|
├─┼─┼─┼─┼─┼┼─┼─┼─┼─┼┤
|
9L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Generators 12\20 and 8\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼───────┤
|
1L 1s
|
12, 8
|
3:2
|
├───┼───────┼───────┤
|
2L 1s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┤
|
5edo
|
4, 4
|
1:1
|
Generators 13\20 and 7\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼──────┤
|
1L 1s
|
13, 7
|
13:7
|
├─────┼──────┼──────┤
|
2L 1s
|
7, 6
|
7:6
|
├─────┼─────┼┼─────┼┤
|
3L 2s
|
6, 1
|
6:1
|
├────┼┼────┼┼┼────┼┼┤
|
3L 5s (checkertonic)
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┼┼───┼┼┼┤
|
3L 8s
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┼┼──┼┼┼┼┤
|
3L 11s
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┤
|
3L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Generators 14\20 and 6\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼─────┤
|
1L 1s
|
14, 6
|
7:3
|
├───────┼─────┼─────┤
|
1L 2s
|
8, 6
|
4:3
|
├─┼─────┼─────┼─────┤
|
3L 1s
|
6, 2
|
3:1
|
├─┼─┼───┼─┼───┼─┼───┤
|
3L 4s (mosh)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
10edo
|
2, 2
|
1:1
|
Generators 15\20 and 5\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼────┤
|
1L 1s
|
15, 5
|
3:1
|
├─────────┼────┼────┤
|
1L 2s
|
10, 5
|
2:1
|
├────┼────┼────┼────┤
|
4edo
|
5, 5
|
1:1
|
Generators 16\20 and 4\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼───┤
|
1L 1s
|
16, 4
|
4:1
|
├───────────┼───┼───┤
|
1L 2s
|
12, 4
|
3:1
|
├───────┼───┼───┼───┤
|
1L 3s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┤
|
5edo
|
4, 4
|
1:1
|
Generators 17\20 and 3\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼──┤
|
1L 1s
|
17, 3
|
17:3
|
├─────────────┼──┼──┤
|
1L 2s
|
14, 3
|
14:3
|
├──────────┼──┼──┼──┤
|
1L 3s
|
11, 3
|
11:3
|
├───────┼──┼──┼──┼──┤
|
1L 4s
|
8, 3
|
8:3
|
├────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼──┼──┤
|
6L 1s (archaeotonic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
7L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Generators 18\20 and 2\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼─┤
|
1L 1s
|
18, 2
|
9:1
|
├───────────────┼─┼─┤
|
1L 2s
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┤
|
1L 3s
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┤
|
1L 4s
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
10edo
|
2, 2
|
1:1
|
Generators 19\20 and 1\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼┤
|
1L 1s
|
19, 1
|
19:1
|
├─────────────────┼┼┤
|
1L 2s
|
18, 1
|
18:1
|
├────────────────┼┼┼┤
|
1L 3s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┤
|
1L 4s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 6\20 and 4\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼───┼─────┼───┤
|
2L 2s
|
6, 4
|
3:2
|
├─┼───┼───┼─┼───┼───┤
|
4L 2s (citric)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
10edo
|
2, 2
|
1:1
|
Generators 7\20 and 3\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼──┼──────┼──┤
|
2L 2s
|
7, 3
|
7:3
|
├───┼──┼──┼───┼──┼──┤
|
2L 4s (malic)
|
4, 3
|
4:3
|
├┼──┼──┼──┼┼──┼──┼──┤
|
6L 2s (ekic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┤
|
6L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Generators 8\20 and 2\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼─┼───────┼─┤
|
2L 2s
|
8, 2
|
4:1
|
├─────┼─┼─┼─────┼─┼─┤
|
2L 4s (malic)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼───┼─┼─┼─┤
|
2L 6s (subaric)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
10edo
|
2, 2
|
1:1
|
Generators 9\20 and 1\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼┼────────┼┤
|
2L 2s
|
9, 1
|
9:1
|
├───────┼┼┼───────┼┼┤
|
2L 4s (malic)
|
8, 1
|
8:1
|
├──────┼┼┼┼──────┼┼┼┤
|
2L 6s (subaric)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼─────┼┼┼┼┤
|
2L 8s (jaric)
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼────┼┼┼┼┼┤
|
2L 10s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼───┼┼┼┼┼┼┤
|
2L 12s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┤
|
2L 14s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┤
|
2L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
4 periods
Generators 3\20 and 2\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┼──┼─┼──┼─┼──┼─┤
|
4L 4s (tetrawood)
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
8L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
Generators 4\20 and 1\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┼───┼┼───┼┼───┼┤
|
4L 4s (tetrawood)
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼──┼┼┼──┼┼┤
|
4L 8s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
4L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
5 periods
Generators 3\20 and 1\20
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┼──┼┼──┼┼──┼┤
|
5L 5s (pentawood)
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
5L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
20edo
|
1, 1
|
1:1
|
21edo
These are all moment of symmetry scales in 21edo.
Single-period MOS scales
Generators 11\21 and 10\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼─────────┤
|
1L 1s
|
11, 10
|
11:10
|
├┼─────────┼─────────┤
|
2L 1s
|
10, 1
|
10:1
|
├┼┼────────┼┼────────┤
|
2L 3s
|
9, 1
|
9:1
|
├┼┼┼───────┼┼┼───────┤
|
2L 5s (antidiatonic)
|
8, 1
|
8:1
|
├┼┼┼┼──────┼┼┼┼──────┤
|
2L 7s (balzano)
|
7, 1
|
7:1
|
├┼┼┼┼┼─────┼┼┼┼┼─────┤
|
2L 9s
|
6, 1
|
6:1
|
├┼┼┼┼┼┼────┼┼┼┼┼┼────┤
|
2L 11s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼┼───┼┼┼┼┼┼┼───┤
|
2L 13s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼──┤
|
2L 15s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼─┤
|
2L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 12\21 and 9\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼────────┤
|
1L 1s
|
12, 9
|
4:3
|
├──┼────────┼────────┤
|
2L 1s
|
9, 3
|
3:1
|
├──┼──┼─────┼──┼─────┤
|
2L 3s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┤
|
7edo
|
3, 3
|
1:1
|
Generators 13\21 and 8\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼───────┤
|
1L 1s
|
13, 8
|
13:8
|
├────┼───────┼───────┤
|
2L 1s
|
8, 5
|
8:5
|
├────┼────┼──┼────┼──┤
|
3L 2s
|
5, 3
|
5:3
|
├─┼──┼─┼──┼──┼─┼──┼──┤
|
5L 3s (oneirotonic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┤
|
8L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 14\21 and 7\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼──────┤
|
1L 1s
|
14, 7
|
2:1
|
├──────┼──────┼──────┤
|
3edo
|
7, 7
|
1:1
|
Generators 15\21 and 6\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼─────┤
|
1L 1s
|
15, 6
|
5:2
|
├────────┼─────┼─────┤
|
1L 2s
|
9, 6
|
3:2
|
├──┼─────┼─────┼─────┤
|
3L 1s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┤
|
7edo
|
3, 3
|
1:1
|
Generators 16\21 and 5\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼────┤
|
1L 1s
|
16, 5
|
16:5
|
├──────────┼────┼────┤
|
1L 2s
|
11, 5
|
11:5
|
├─────┼────┼────┼────┤
|
1L 3s
|
6, 5
|
6:5
|
├┼────┼────┼────┼────┤
|
4L 1s
|
5, 1
|
5:1
|
├┼┼───┼┼───┼┼───┼┼───┤
|
4L 5s (gramitonic)
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼──┼┼┼──┼┼┼──┤
|
4L 9s
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┤
|
4L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 17\21 and 4\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼───┤
|
1L 1s
|
17, 4
|
17:4
|
├────────────┼───┼───┤
|
1L 2s
|
13, 4
|
13:4
|
├────────┼───┼───┼───┤
|
1L 3s
|
9, 4
|
9:4
|
├────┼───┼───┼───┼───┤
|
1L 4s
|
5, 4
|
5:4
|
├┼───┼───┼───┼───┼───┤
|
5L 1s (machinoid)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┼┼──┼┼──┤
|
5L 6s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┤
|
5L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 18\21 and 3\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼──┤
|
1L 1s
|
18, 3
|
6:1
|
├──────────────┼──┼──┤
|
1L 2s
|
15, 3
|
5:1
|
├───────────┼──┼──┼──┤
|
1L 3s
|
12, 3
|
4:1
|
├────────┼──┼──┼──┼──┤
|
1L 4s
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┤
|
7edo
|
3, 3
|
1:1
|
Generators 19\21 and 2\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼─┤
|
1L 1s
|
19, 2
|
19:2
|
├────────────────┼─┼─┤
|
1L 2s
|
17, 2
|
17:2
|
├──────────────┼─┼─┼─┤
|
1L 3s
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┼─┤
|
1L 4s
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
10L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 20\21 and 1\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼┤
|
1L 1s
|
20, 1
|
20:1
|
├──────────────────┼┼┤
|
1L 2s
|
19, 1
|
19:1
|
├─────────────────┼┼┼┤
|
1L 3s
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┤
|
1L 4s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Multi-period MOS scales
3 periods
Generators 4\21 and 3\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼──┼───┼──┼───┼──┤
|
3L 3s (triwood)
|
4, 3
|
4:3
|
├┼──┼──┼┼──┼──┼┼──┼──┤
|
6L 3s (hyrulic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┤
|
6L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 5\21 and 2\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼─┼────┼─┼────┼─┤
|
3L 3s (triwood)
|
5, 2
|
5:2
|
├──┼─┼─┼──┼─┼─┼──┼─┼─┤
|
3L 6s (tcherepnin)
|
3, 2
|
3:2
|
├┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┤
|
9L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
Generators 6\21 and 1\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼┼─────┼┼─────┼┤
|
3L 3s (triwood)
|
6, 1
|
6:1
|
├────┼┼┼────┼┼┼────┼┼┤
|
3L 6s (tcherepnin)
|
5, 1
|
5:1
|
├───┼┼┼┼───┼┼┼┼───┼┼┼┤
|
3L 9s
|
4, 1
|
4:1
|
├──┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┤
|
3L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┤
|
3L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
7 periods
Generators 2\21 and 1\21
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
7L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
21edo
|
1, 1
|
1:1
|
22edo
These are all moment of symmetry scales in 22edo.
Single-period MOS scales
Generators 12\22 and 10\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼─────────┤
|
1L 1s
|
12, 10
|
6:5
|
├─┼─────────┼─────────┤
|
2L 1s
|
10, 2
|
5:1
|
├─┼─┼───────┼─┼───────┤
|
2L 3s
|
8, 2
|
4:1
|
├─┼─┼─┼─────┼─┼─┼─────┤
|
2L 5s (antidiatonic)
|
6, 2
|
3:1
|
├─┼─┼─┼─┼───┼─┼─┼─┼───┤
|
2L 7s (balzano)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11edo
|
2, 2
|
1:1
|
Generators 13\22 and 9\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼────────┤
|
1L 1s
|
13, 9
|
13:9
|
├───┼────────┼────────┤
|
2L 1s
|
9, 4
|
9:4
|
├───┼───┼────┼───┼────┤
|
2L 3s
|
5, 4
|
5:4
|
├───┼───┼───┼┼───┼───┼┤
|
5L 2s (diatonic)
|
4, 1
|
4:1
|
├──┼┼──┼┼──┼┼┼──┼┼──┼┼┤
|
5L 7s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┼┼┼┤
|
5L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 14\22 and 8\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼───────┤
|
1L 1s
|
14, 8
|
7:4
|
├─────┼───────┼───────┤
|
2L 1s
|
8, 6
|
4:3
|
├─────┼─────┼─┼─────┼─┤
|
3L 2s
|
6, 2
|
3:1
|
├───┼─┼───┼─┼─┼───┼─┼─┤
|
3L 5s (checkertonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11edo
|
2, 2
|
1:1
|
Generators 15\22 and 7\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼──────┤
|
1L 1s
|
15, 7
|
15:7
|
├───────┼──────┼──────┤
|
1L 2s
|
8, 7
|
8:7
|
├┼──────┼──────┼──────┤
|
3L 1s
|
7, 1
|
7:1
|
├┼┼─────┼┼─────┼┼─────┤
|
3L 4s (mosh)
|
6, 1
|
6:1
|
├┼┼┼────┼┼┼────┼┼┼────┤
|
3L 7s (sephiroid)
|
5, 1
|
5:1
|
├┼┼┼┼───┼┼┼┼───┼┼┼┼───┤
|
3L 10s
|
4, 1
|
4:1
|
├┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼──┤
|
3L 13s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼─┤
|
3L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 16\22 and 6\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼─────┤
|
1L 1s
|
16, 6
|
8:3
|
├─────────┼─────┼─────┤
|
1L 2s
|
10, 6
|
5:3
|
├───┼─────┼─────┼─────┤
|
3L 1s
|
6, 4
|
3:2
|
├───┼───┼─┼───┼─┼───┼─┤
|
4L 3s (smitonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11edo
|
2, 2
|
1:1
|
Generators 17\22 and 5\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼────┤
|
1L 1s
|
17, 5
|
17:5
|
├───────────┼────┼────┤
|
1L 2s
|
12, 5
|
12:5
|
├──────┼────┼────┼────┤
|
1L 3s
|
7, 5
|
7:5
|
├─┼────┼────┼────┼────┤
|
4L 1s
|
5, 2
|
5:2
|
├─┼─┼──┼─┼──┼─┼──┼─┼──┤
|
4L 5s (gramitonic)
|
3, 2
|
3:2
|
├─┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┤
|
9L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 18\22 and 4\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼───┤
|
1L 1s
|
18, 4
|
9:2
|
├─────────────┼───┼───┤
|
1L 2s
|
14, 4
|
7:2
|
├─────────┼───┼───┼───┤
|
1L 3s
|
10, 4
|
5:2
|
├─────┼───┼───┼───┼───┤
|
1L 4s
|
6, 4
|
3:2
|
├─┼───┼───┼───┼───┼───┤
|
5L 1s (machinoid)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11edo
|
2, 2
|
1:1
|
Generators 19\22 and 3\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼──┤
|
1L 1s
|
19, 3
|
19:3
|
├───────────────┼──┼──┤
|
1L 2s
|
16, 3
|
16:3
|
├────────────┼──┼──┼──┤
|
1L 3s
|
13, 3
|
13:3
|
├─────────┼──┼──┼──┼──┤
|
1L 4s
|
10, 3
|
10:3
|
├──────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┼──┼──┤
|
7L 1s (pine)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
7L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 20\22 and 2\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼─┤
|
1L 1s
|
20, 2
|
10:1
|
├─────────────────┼─┼─┤
|
1L 2s
|
18, 2
|
9:1
|
├───────────────┼─┼─┼─┤
|
1L 3s
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┼─┤
|
1L 4s
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11edo
|
2, 2
|
1:1
|
Generators 21\22 and 1\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼┤
|
1L 1s
|
21, 1
|
21:1
|
├───────────────────┼┼┤
|
1L 2s
|
20, 1
|
20:1
|
├──────────────────┼┼┼┤
|
1L 3s
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┤
|
1L 4s
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 6\22 and 5\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼────┼─────┼────┤
|
2L 2s
|
6, 5
|
6:5
|
├┼────┼────┼┼────┼────┤
|
4L 2s (citric)
|
5, 1
|
5:1
|
├┼┼───┼┼───┼┼┼───┼┼───┤
|
4L 6s (lime)
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼──┼┼┼┼──┼┼┼──┤
|
4L 10s
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼─┼┼┼┼┼─┼┼┼┼─┤
|
4L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 7\22 and 4\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼───┼──────┼───┤
|
2L 2s
|
7, 4
|
7:4
|
├──┼───┼───┼──┼───┼───┤
|
4L 2s (citric)
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼──┼┼──┼┤
|
6L 4s (lemon)
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼─┼┼┼─┼┼┤
|
6L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 8\22 and 3\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼──┼───────┼──┤
|
2L 2s
|
8, 3
|
8:3
|
├────┼──┼──┼────┼──┼──┤
|
2L 4s (malic)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼─┼──┼──┼──┤
|
6L 2s (ekic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼─┼┼─┼┼─┼┤
|
8L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 9\22 and 2\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼─┼────────┼─┤
|
2L 2s
|
9, 2
|
9:2
|
├──────┼─┼─┼──────┼─┼─┤
|
2L 4s (malic)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼────┼─┼─┼─┤
|
2L 6s (subaric)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼──┼─┼─┼─┼─┤
|
2L 8s (jaric)
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┤
|
10L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
Generators 10\22 and 1\22
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼┼─────────┼┤
|
2L 2s
|
10, 1
|
10:1
|
├────────┼┼┼────────┼┼┤
|
2L 4s (malic)
|
9, 1
|
9:1
|
├───────┼┼┼┼───────┼┼┼┤
|
2L 6s (subaric)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼──────┼┼┼┼┤
|
2L 8s (jaric)
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼─────┼┼┼┼┼┤
|
2L 10s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼────┼┼┼┼┼┼┤
|
2L 12s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┤
|
2L 14s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┤
|
2L 16s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┤
|
2L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
22edo
|
1, 1
|
1:1
|
23edo
These are all moment of symmetry scales in 23edo.
Single-period MOS scales
Generators 12\23 and 11\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼──────────┤
|
1L 1s
|
12, 11
|
12:11
|
├┼──────────┼──────────┤
|
2L 1s
|
11, 1
|
11:1
|
├┼┼─────────┼┼─────────┤
|
2L 3s
|
10, 1
|
10:1
|
├┼┼┼────────┼┼┼────────┤
|
2L 5s (antidiatonic)
|
9, 1
|
9:1
|
├┼┼┼┼───────┼┼┼┼───────┤
|
2L 7s (balzano)
|
8, 1
|
8:1
|
├┼┼┼┼┼──────┼┼┼┼┼──────┤
|
2L 9s
|
7, 1
|
7:1
|
├┼┼┼┼┼┼─────┼┼┼┼┼┼─────┤
|
2L 11s
|
6, 1
|
6:1
|
├┼┼┼┼┼┼┼────┼┼┼┼┼┼┼────┤
|
2L 13s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼───┤
|
2L 15s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼──┤
|
2L 17s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼─┤
|
2L 19s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 13\23 and 10\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼─────────┤
|
1L 1s
|
13, 10
|
13:10
|
├──┼─────────┼─────────┤
|
2L 1s
|
10, 3
|
10:3
|
├──┼──┼──────┼──┼──────┤
|
2L 3s
|
7, 3
|
7:3
|
├──┼──┼──┼───┼──┼──┼───┤
|
2L 5s (antidiatonic)
|
4, 3
|
4:3
|
├──┼──┼──┼──┼┼──┼──┼──┼┤
|
7L 2s (armotonic)
|
3, 1
|
3:1
|
├─┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┼┼┤
|
7L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 14\23 and 9\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼────────┤
|
1L 1s
|
14, 9
|
14:9
|
├────┼────────┼────────┤
|
2L 1s
|
9, 5
|
9:5
|
├────┼────┼───┼────┼───┤
|
3L 2s
|
5, 4
|
5:4
|
├┼───┼┼───┼───┼┼───┼───┤
|
5L 3s (oneirotonic)
|
4, 1
|
4:1
|
├┼┼──┼┼┼──┼┼──┼┼┼──┼┼──┤
|
5L 8s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┤
|
5L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 15\23 and 8\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼───────┤
|
1L 1s
|
15, 8
|
15:8
|
├──────┼───────┼───────┤
|
2L 1s
|
8, 7
|
8:7
|
├──────┼──────┼┼──────┼┤
|
3L 2s
|
7, 1
|
7:1
|
├─────┼┼─────┼┼┼─────┼┼┤
|
3L 5s (checkertonic)
|
6, 1
|
6:1
|
├────┼┼┼────┼┼┼┼────┼┼┼┤
|
3L 8s
|
5, 1
|
5:1
|
├───┼┼┼┼───┼┼┼┼┼───┼┼┼┼┤
|
3L 11s
|
4, 1
|
4:1
|
├──┼┼┼┼┼──┼┼┼┼┼┼──┼┼┼┼┼┤
|
3L 14s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼─┼┼┼┼┼┼┼─┼┼┼┼┼┼┤
|
3L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 16\23 and 7\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼──────┤
|
1L 1s
|
16, 7
|
16:7
|
├────────┼──────┼──────┤
|
1L 2s
|
9, 7
|
9:7
|
├─┼──────┼──────┼──────┤
|
3L 1s
|
7, 2
|
7:2
|
├─┼─┼────┼─┼────┼─┼────┤
|
3L 4s (mosh)
|
5, 2
|
5:2
|
├─┼─┼─┼──┼─┼─┼──┼─┼─┼──┤
|
3L 7s (sephiroid)
|
3, 2
|
3:2
|
├─┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┼┤
|
10L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 17\23 and 6\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼─────┤
|
1L 1s
|
17, 6
|
17:6
|
├──────────┼─────┼─────┤
|
1L 2s
|
11, 6
|
11:6
|
├────┼─────┼─────┼─────┤
|
3L 1s
|
6, 5
|
6:5
|
├────┼────┼┼────┼┼────┼┤
|
4L 3s (smitonic)
|
5, 1
|
5:1
|
├───┼┼───┼┼┼───┼┼┼───┼┼┤
|
4L 7s
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┤
|
4L 11s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
4L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 18\23 and 5\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼────┤
|
1L 1s
|
18, 5
|
18:5
|
├────────────┼────┼────┤
|
1L 2s
|
13, 5
|
13:5
|
├───────┼────┼────┼────┤
|
1L 3s
|
8, 5
|
8:5
|
├──┼────┼────┼────┼────┤
|
4L 1s
|
5, 3
|
5:3
|
├──┼──┼─┼──┼─┼──┼─┼──┼─┤
|
5L 4s (semiquartal)
|
3, 2
|
3:2
|
├┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
9L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 19\23 and 4\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼───┤
|
1L 1s
|
19, 4
|
19:4
|
├──────────────┼───┼───┤
|
1L 2s
|
15, 4
|
15:4
|
├──────────┼───┼───┼───┤
|
1L 3s
|
11, 4
|
11:4
|
├──────┼───┼───┼───┼───┤
|
1L 4s
|
7, 4
|
7:4
|
├──┼───┼───┼───┼───┼───┤
|
5L 1s (machinoid)
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┼──┼┼──┼┤
|
6L 5s
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
6L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 20\23 and 3\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼──┤
|
1L 1s
|
20, 3
|
20:3
|
├────────────────┼──┼──┤
|
1L 2s
|
17, 3
|
17:3
|
├─────────────┼──┼──┼──┤
|
1L 3s
|
14, 3
|
14:3
|
├──────────┼──┼──┼──┼──┤
|
1L 4s
|
11, 3
|
11:3
|
├───────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
8, 3
|
8:3
|
├────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼──┼──┼──┤
|
7L 1s (pine)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
8L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 21\23 and 2\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼─┤
|
1L 1s
|
21, 2
|
21:2
|
├──────────────────┼─┼─┤
|
1L 2s
|
19, 2
|
19:2
|
├────────────────┼─┼─┼─┤
|
1L 3s
|
17, 2
|
17:2
|
├──────────────┼─┼─┼─┼─┤
|
1L 4s
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
11L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
Generators 22\23 and 1\23
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼┤
|
1L 1s
|
22, 1
|
22:1
|
├────────────────────┼┼┤
|
1L 2s
|
21, 1
|
21:1
|
├───────────────────┼┼┼┤
|
1L 3s
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┤
|
1L 4s
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
23edo
|
1, 1
|
1:1
|
24edo
These are all moment of symmetry scales in 24edo.
Single-period MOS scales
Generators 13\24 and 11\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼──────────┤
|
1L 1s
|
13, 11
|
13:11
|
├─┼──────────┼──────────┤
|
2L 1s
|
11, 2
|
11:2
|
├─┼─┼────────┼─┼────────┤
|
2L 3s
|
9, 2
|
9:2
|
├─┼─┼─┼──────┼─┼─┼──────┤
|
2L 5s (antidiatonic)
|
7, 2
|
7:2
|
├─┼─┼─┼─┼────┼─┼─┼─┼────┤
|
2L 7s (balzano)
|
5, 2
|
5:2
|
├─┼─┼─┼─┼─┼──┼─┼─┼─┼─┼──┤
|
2L 9s
|
3, 2
|
3:2
|
├─┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┼┤
|
11L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Generators 14\24 and 10\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼─────────┤
|
1L 1s
|
14, 10
|
7:5
|
├───┼─────────┼─────────┤
|
2L 1s
|
10, 4
|
5:2
|
├───┼───┼─────┼───┼─────┤
|
2L 3s
|
6, 4
|
3:2
|
├───┼───┼───┼─┼───┼───┼─┤
|
5L 2s (diatonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12edo
|
2, 2
|
1:1
|
Generators 15\24 and 9\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼────────┤
|
1L 1s
|
15, 9
|
5:3
|
├─────┼────────┼────────┤
|
2L 1s
|
9, 6
|
3:2
|
├─────┼─────┼──┼─────┼──┤
|
3L 2s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┤
|
8edo
|
3, 3
|
1:1
|
Generators 16\24 and 8\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼───────┤
|
1L 1s
|
16, 8
|
2:1
|
├───────┼───────┼───────┤
|
3edo
|
8, 8
|
1:1
|
Generators 17\24 and 7\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼──────┤
|
1L 1s
|
17, 7
|
17:7
|
├─────────┼──────┼──────┤
|
1L 2s
|
10, 7
|
10:7
|
├──┼──────┼──────┼──────┤
|
3L 1s
|
7, 3
|
7:3
|
├──┼──┼───┼──┼───┼──┼───┤
|
3L 4s (mosh)
|
4, 3
|
4:3
|
├──┼──┼──┼┼──┼──┼┼──┼──┼┤
|
7L 3s (dicoid)
|
3, 1
|
3:1
|
├─┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┼┼┤
|
7L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Generators 18\24 and 6\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼─────┤
|
1L 1s
|
18, 6
|
3:1
|
├───────────┼─────┼─────┤
|
1L 2s
|
12, 6
|
2:1
|
├─────┼─────┼─────┼─────┤
|
4edo
|
6, 6
|
1:1
|
Generators 19\24 and 5\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼────┤
|
1L 1s
|
19, 5
|
19:5
|
├─────────────┼────┼────┤
|
1L 2s
|
14, 5
|
14:5
|
├────────┼────┼────┼────┤
|
1L 3s
|
9, 5
|
9:5
|
├───┼────┼────┼────┼────┤
|
4L 1s
|
5, 4
|
5:4
|
├───┼───┼┼───┼┼───┼┼───┼┤
|
5L 4s (semiquartal)
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┤
|
5L 9s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
5L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Generators 20\24 and 4\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼───┤
|
1L 1s
|
20, 4
|
5:1
|
├───────────────┼───┼───┤
|
1L 2s
|
16, 4
|
4:1
|
├───────────┼───┼───┼───┤
|
1L 3s
|
12, 4
|
3:1
|
├───────┼───┼───┼───┼───┤
|
1L 4s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┼───┤
|
6edo
|
4, 4
|
1:1
|
Generators 21\24 and 3\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼──┤
|
1L 1s
|
21, 3
|
7:1
|
├─────────────────┼──┼──┤
|
1L 2s
|
18, 3
|
6:1
|
├──────────────┼──┼──┼──┤
|
1L 3s
|
15, 3
|
5:1
|
├───────────┼──┼──┼──┼──┤
|
1L 4s
|
12, 3
|
4:1
|
├────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┤
|
8edo
|
3, 3
|
1:1
|
Generators 22\24 and 2\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼─┤
|
1L 1s
|
22, 2
|
11:1
|
├───────────────────┼─┼─┤
|
1L 2s
|
20, 2
|
10:1
|
├─────────────────┼─┼─┼─┤
|
1L 3s
|
18, 2
|
9:1
|
├───────────────┼─┼─┼─┼─┤
|
1L 4s
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12edo
|
2, 2
|
1:1
|
Generators 23\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼┤
|
1L 1s
|
23, 1
|
23:1
|
├─────────────────────┼┼┤
|
1L 2s
|
22, 1
|
22:1
|
├────────────────────┼┼┼┤
|
1L 3s
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┤
|
1L 4s
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 7\24 and 5\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼────┼──────┼────┤
|
2L 2s
|
7, 5
|
7:5
|
├─┼────┼────┼─┼────┼────┤
|
4L 2s (citric)
|
5, 2
|
5:2
|
├─┼─┼──┼─┼──┼─┼─┼──┼─┼──┤
|
4L 6s (lime)
|
3, 2
|
3:2
|
├─┼─┼─┼┼─┼─┼┼─┼─┼─┼┼─┼─┼┤
|
10L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Generators 8\24 and 4\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼───┼───────┼───┤
|
2L 2s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┼───┤
|
6edo
|
4, 4
|
1:1
|
Generators 9\24 and 3\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼──┼────────┼──┤
|
2L 2s
|
9, 3
|
3:1
|
├─────┼──┼──┼─────┼──┼──┤
|
2L 4s (malic)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┤
|
8edo
|
3, 3
|
1:1
|
Generators 10\24 and 2\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼─┼─────────┼─┤
|
2L 2s
|
10, 2
|
5:1
|
├───────┼─┼─┼───────┼─┼─┤
|
2L 4s (malic)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─────┼─┼─┼─┤
|
2L 6s (subaric)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼───┼─┼─┼─┼─┤
|
2L 8s (jaric)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12edo
|
2, 2
|
1:1
|
Generators 11\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼┼──────────┼┤
|
2L 2s
|
11, 1
|
11:1
|
├─────────┼┼┼─────────┼┼┤
|
2L 4s (malic)
|
10, 1
|
10:1
|
├────────┼┼┼┼────────┼┼┼┤
|
2L 6s (subaric)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼───────┼┼┼┼┤
|
2L 8s (jaric)
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼──────┼┼┼┼┼┤
|
2L 10s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼─────┼┼┼┼┼┼┤
|
2L 12s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┤
|
2L 14s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┤
|
2L 16s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┤
|
2L 18s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┤
|
2L 20s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
3 periods
Generators 5\24 and 3\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼──┼────┼──┼────┼──┤
|
3L 3s (triwood)
|
5, 3
|
5:3
|
├─┼──┼──┼─┼──┼──┼─┼──┼──┤
|
6L 3s (hyrulic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┤
|
9L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
Generators 6\24 and 2\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼─┼─────┼─┼─────┼─┤
|
3L 3s (triwood)
|
6, 2
|
3:1
|
├───┼─┼─┼───┼─┼─┼───┼─┼─┤
|
3L 6s (tcherepnin)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12edo
|
2, 2
|
1:1
|
Generators 7\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼┼──────┼┼──────┼┤
|
3L 3s (triwood)
|
7, 1
|
7:1
|
├─────┼┼┼─────┼┼┼─────┼┼┤
|
3L 6s (tcherepnin)
|
6, 1
|
6:1
|
├────┼┼┼┼────┼┼┼┼────┼┼┼┤
|
3L 9s
|
5, 1
|
5:1
|
├───┼┼┼┼┼───┼┼┼┼┼───┼┼┼┼┤
|
3L 12s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼──┼┼┼┼┼┼──┼┼┼┼┼┤
|
3L 15s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼─┼┼┼┼┼┼┼─┼┼┼┼┼┼┤
|
3L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
4 periods
Generators 4\24 and 2\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼─┼───┼─┼───┼─┼───┼─┤
|
4L 4s (tetrawood)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12edo
|
2, 2
|
1:1
|
Generators 5\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼┼────┼┼────┼┼────┼┤
|
4L 4s (tetrawood)
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┼───┼┼┼───┼┼┤
|
4L 8s
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┤
|
4L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
4L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
6 periods
Generators 3\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┼──┼┼──┼┼──┼┼──┼┤
|
6L 6s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
6L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
8 periods
Generators 2\24 and 1\24
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
8L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
24edo
|
1, 1
|
1:1
|
25edo
These are all moment of symmetry scales in 25edo.
Single-period MOS scales
Generators 13\25 and 12\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼───────────┤
|
1L 1s
|
13, 12
|
13:12
|
├┼───────────┼───────────┤
|
2L 1s
|
12, 1
|
12:1
|
├┼┼──────────┼┼──────────┤
|
2L 3s
|
11, 1
|
11:1
|
├┼┼┼─────────┼┼┼─────────┤
|
2L 5s (antidiatonic)
|
10, 1
|
10:1
|
├┼┼┼┼────────┼┼┼┼────────┤
|
2L 7s (balzano)
|
9, 1
|
9:1
|
├┼┼┼┼┼───────┼┼┼┼┼───────┤
|
2L 9s
|
8, 1
|
8:1
|
├┼┼┼┼┼┼──────┼┼┼┼┼┼──────┤
|
2L 11s
|
7, 1
|
7:1
|
├┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼─────┤
|
2L 13s
|
6, 1
|
6:1
|
├┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼────┤
|
2L 15s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼───┤
|
2L 17s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼──┤
|
2L 19s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼─┤
|
2L 21s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 14\25 and 11\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼──────────┤
|
1L 1s
|
14, 11
|
14:11
|
├──┼──────────┼──────────┤
|
2L 1s
|
11, 3
|
11:3
|
├──┼──┼───────┼──┼───────┤
|
2L 3s
|
8, 3
|
8:3
|
├──┼──┼──┼────┼──┼──┼────┤
|
2L 5s (antidiatonic)
|
5, 3
|
5:3
|
├──┼──┼──┼──┼─┼──┼──┼──┼─┤
|
7L 2s (armotonic)
|
3, 2
|
3:2
|
├┼─┼┼─┼┼─┼┼─┼─┼┼─┼┼─┼┼─┼─┤
|
9L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 15\25 and 10\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼─────────┤
|
1L 1s
|
15, 10
|
3:2
|
├────┼─────────┼─────────┤
|
2L 1s
|
10, 5
|
2:1
|
├────┼────┼────┼────┼────┤
|
5edo
|
5, 5
|
1:1
|
Generators 16\25 and 9\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼────────┤
|
1L 1s
|
16, 9
|
16:9
|
├──────┼────────┼────────┤
|
2L 1s
|
9, 7
|
9:7
|
├──────┼──────┼─┼──────┼─┤
|
3L 2s
|
7, 2
|
7:2
|
├────┼─┼────┼─┼─┼────┼─┼─┤
|
3L 5s (checkertonic)
|
5, 2
|
5:2
|
├──┼─┼─┼──┼─┼─┼─┼──┼─┼─┼─┤
|
3L 8s
|
3, 2
|
3:2
|
├┼─┼─┼─┼┼─┼─┼─┼─┼┼─┼─┼─┼─┤
|
11L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 17\25 and 8\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼───────┤
|
1L 1s
|
17, 8
|
17:8
|
├────────┼───────┼───────┤
|
1L 2s
|
9, 8
|
9:8
|
├┼───────┼───────┼───────┤
|
3L 1s
|
8, 1
|
8:1
|
├┼┼──────┼┼──────┼┼──────┤
|
3L 4s (mosh)
|
7, 1
|
7:1
|
├┼┼┼─────┼┼┼─────┼┼┼─────┤
|
3L 7s (sephiroid)
|
6, 1
|
6:1
|
├┼┼┼┼────┼┼┼┼────┼┼┼┼────┤
|
3L 10s
|
5, 1
|
5:1
|
├┼┼┼┼┼───┼┼┼┼┼───┼┼┼┼┼───┤
|
3L 13s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼──┼┼┼┼┼┼──┼┼┼┼┼┼──┤
|
3L 16s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼─┼┼┼┼┼┼┼─┼┼┼┼┼┼┼─┤
|
3L 19s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 18\25 and 7\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼──────┤
|
1L 1s
|
18, 7
|
18:7
|
├──────────┼──────┼──────┤
|
1L 2s
|
11, 7
|
11:7
|
├───┼──────┼──────┼──────┤
|
3L 1s
|
7, 4
|
7:4
|
├───┼───┼──┼───┼──┼───┼──┤
|
4L 3s (smitonic)
|
4, 3
|
4:3
|
├┼──┼┼──┼──┼┼──┼──┼┼──┼──┤
|
7L 4s
|
3, 1
|
3:1
|
├┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┤
|
7L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 19\25 and 6\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼─────┤
|
1L 1s
|
19, 6
|
19:6
|
├────────────┼─────┼─────┤
|
1L 2s
|
13, 6
|
13:6
|
├──────┼─────┼─────┼─────┤
|
1L 3s
|
7, 6
|
7:6
|
├┼─────┼─────┼─────┼─────┤
|
4L 1s
|
6, 1
|
6:1
|
├┼┼────┼┼────┼┼────┼┼────┤
|
4L 5s (gramitonic)
|
5, 1
|
5:1
|
├┼┼┼───┼┼┼───┼┼┼───┼┼┼───┤
|
4L 9s
|
4, 1
|
4:1
|
├┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┼──┤
|
4L 13s
|
3, 1
|
3:1
|
├┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┤
|
4L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 20\25 and 5\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼────┤
|
1L 1s
|
20, 5
|
4:1
|
├──────────────┼────┼────┤
|
1L 2s
|
15, 5
|
3:1
|
├─────────┼────┼────┼────┤
|
1L 3s
|
10, 5
|
2:1
|
├────┼────┼────┼────┼────┤
|
5edo
|
5, 5
|
1:1
|
Generators 21\25 and 4\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼───┤
|
1L 1s
|
21, 4
|
21:4
|
├────────────────┼───┼───┤
|
1L 2s
|
17, 4
|
17:4
|
├────────────┼───┼───┼───┤
|
1L 3s
|
13, 4
|
13:4
|
├────────┼───┼───┼───┼───┤
|
1L 4s
|
9, 4
|
9:4
|
├────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
5, 4
|
5:4
|
├┼───┼───┼───┼───┼───┼───┤
|
6L 1s (archaeotonic)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┼┼──┼┼──┼┼──┤
|
6L 7s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┤
|
6L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 22\25 and 3\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼──┤
|
1L 1s
|
22, 3
|
22:3
|
├──────────────────┼──┼──┤
|
1L 2s
|
19, 3
|
19:3
|
├───────────────┼──┼──┼──┤
|
1L 3s
|
16, 3
|
16:3
|
├────────────┼──┼──┼──┼──┤
|
1L 4s
|
13, 3
|
13:3
|
├─────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
10, 3
|
10:3
|
├──────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┼──┼──┼──┤
|
8L 1s (subneutralic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
8L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 23\25 and 2\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼─┤
|
1L 1s
|
23, 2
|
23:2
|
├────────────────────┼─┼─┤
|
1L 2s
|
21, 2
|
21:2
|
├──────────────────┼─┼─┼─┤
|
1L 3s
|
19, 2
|
19:2
|
├────────────────┼─┼─┼─┼─┤
|
1L 4s
|
17, 2
|
17:2
|
├──────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
12L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 24\25 and 1\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼┤
|
1L 1s
|
24, 1
|
24:1
|
├──────────────────────┼┼┤
|
1L 2s
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┤
|
1L 3s
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┤
|
1L 4s
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Multi-period MOS scales
5 periods
Generators 3\25 and 2\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┼──┼─┼──┼─┼──┼─┼──┼─┤
|
5L 5s (pentawood)
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
10L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
Generators 4\25 and 1\25
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┼───┼┼───┼┼───┼┼───┼┤
|
5L 5s (pentawood)
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┤
|
5L 10s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
5L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
25edo
|
1, 1
|
1:1
|
26edo
These are all moment of symmetry scales in 26edo.
Single-period MOS scales
Generators 14\26 and 12\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼───────────┤
|
1L 1s
|
14, 12
|
7:6
|
├─┼───────────┼───────────┤
|
2L 1s
|
12, 2
|
6:1
|
├─┼─┼─────────┼─┼─────────┤
|
2L 3s
|
10, 2
|
5:1
|
├─┼─┼─┼───────┼─┼─┼───────┤
|
2L 5s (antidiatonic)
|
8, 2
|
4:1
|
├─┼─┼─┼─┼─────┼─┼─┼─┼─────┤
|
2L 7s (balzano)
|
6, 2
|
3:1
|
├─┼─┼─┼─┼─┼───┼─┼─┼─┼─┼───┤
|
2L 9s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 15\26 and 11\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼──────────┤
|
1L 1s
|
15, 11
|
15:11
|
├───┼──────────┼──────────┤
|
2L 1s
|
11, 4
|
11:4
|
├───┼───┼──────┼───┼──────┤
|
2L 3s
|
7, 4
|
7:4
|
├───┼───┼───┼──┼───┼───┼──┤
|
5L 2s (diatonic)
|
4, 3
|
4:3
|
├┼──┼┼──┼┼──┼──┼┼──┼┼──┼──┤
|
7L 5s
|
3, 1
|
3:1
|
├┼┼─┼┼┼─┼┼┼─┼┼─┼┼┼─┼┼┼─┼┼─┤
|
7L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 16\26 and 10\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼─────────┤
|
1L 1s
|
16, 10
|
8:5
|
├─────┼─────────┼─────────┤
|
2L 1s
|
10, 6
|
5:3
|
├─────┼─────┼───┼─────┼───┤
|
3L 2s
|
6, 4
|
3:2
|
├─┼───┼─┼───┼───┼─┼───┼───┤
|
5L 3s (oneirotonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 17\26 and 9\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼────────┤
|
1L 1s
|
17, 9
|
17:9
|
├───────┼────────┼────────┤
|
2L 1s
|
9, 8
|
9:8
|
├───────┼───────┼┼───────┼┤
|
3L 2s
|
8, 1
|
8:1
|
├──────┼┼──────┼┼┼──────┼┼┤
|
3L 5s (checkertonic)
|
7, 1
|
7:1
|
├─────┼┼┼─────┼┼┼┼─────┼┼┼┤
|
3L 8s
|
6, 1
|
6:1
|
├────┼┼┼┼────┼┼┼┼┼────┼┼┼┼┤
|
3L 11s
|
5, 1
|
5:1
|
├───┼┼┼┼┼───┼┼┼┼┼┼───┼┼┼┼┼┤
|
3L 14s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼──┼┼┼┼┼┼┼──┼┼┼┼┼┼┤
|
3L 17s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┤
|
3L 20s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 18\26 and 8\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼───────┤
|
1L 1s
|
18, 8
|
9:4
|
├─────────┼───────┼───────┤
|
1L 2s
|
10, 8
|
5:4
|
├─┼───────┼───────┼───────┤
|
3L 1s
|
8, 2
|
4:1
|
├─┼─┼─────┼─┼─────┼─┼─────┤
|
3L 4s (mosh)
|
6, 2
|
3:1
|
├─┼─┼─┼───┼─┼─┼───┼─┼─┼───┤
|
3L 7s (sephiroid)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 19\26 and 7\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼──────┤
|
1L 1s
|
19, 7
|
19:7
|
├───────────┼──────┼──────┤
|
1L 2s
|
12, 7
|
12:7
|
├────┼──────┼──────┼──────┤
|
3L 1s
|
7, 5
|
7:5
|
├────┼────┼─┼────┼─┼────┼─┤
|
4L 3s (smitonic)
|
5, 2
|
5:2
|
├──┼─┼──┼─┼─┼──┼─┼─┼──┼─┼─┤
|
4L 7s
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┤
|
11L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 20\26 and 6\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼─────┤
|
1L 1s
|
20, 6
|
10:3
|
├─────────────┼─────┼─────┤
|
1L 2s
|
14, 6
|
7:3
|
├───────┼─────┼─────┼─────┤
|
1L 3s
|
8, 6
|
4:3
|
├─┼─────┼─────┼─────┼─────┤
|
4L 1s
|
6, 2
|
3:1
|
├─┼─┼───┼─┼───┼─┼───┼─┼───┤
|
4L 5s (gramitonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 21\26 and 5\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼────┤
|
1L 1s
|
21, 5
|
21:5
|
├───────────────┼────┼────┤
|
1L 2s
|
16, 5
|
16:5
|
├──────────┼────┼────┼────┤
|
1L 3s
|
11, 5
|
11:5
|
├─────┼────┼────┼────┼────┤
|
1L 4s
|
6, 5
|
6:5
|
├┼────┼────┼────┼────┼────┤
|
5L 1s (machinoid)
|
5, 1
|
5:1
|
├┼┼───┼┼───┼┼───┼┼───┼┼───┤
|
5L 6s
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┼──┤
|
5L 11s
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┤
|
5L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 22\26 and 4\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼───┤
|
1L 1s
|
22, 4
|
11:2
|
├─────────────────┼───┼───┤
|
1L 2s
|
18, 4
|
9:2
|
├─────────────┼───┼───┼───┤
|
1L 3s
|
14, 4
|
7:2
|
├─────────┼───┼───┼───┼───┤
|
1L 4s
|
10, 4
|
5:2
|
├─────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
6, 4
|
3:2
|
├─┼───┼───┼───┼───┼───┼───┤
|
6L 1s (archaeotonic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 23\26 and 3\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼──┤
|
1L 1s
|
23, 3
|
23:3
|
├───────────────────┼──┼──┤
|
1L 2s
|
20, 3
|
20:3
|
├────────────────┼──┼──┼──┤
|
1L 3s
|
17, 3
|
17:3
|
├─────────────┼──┼──┼──┼──┤
|
1L 4s
|
14, 3
|
14:3
|
├──────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
11, 3
|
11:3
|
├───────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
8, 3
|
8:3
|
├────┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼──┼──┼──┼──┤
|
8L 1s (subneutralic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
9L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 24\26 and 2\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼─┤
|
1L 1s
|
24, 2
|
12:1
|
├─────────────────────┼─┼─┤
|
1L 2s
|
22, 2
|
11:1
|
├───────────────────┼─┼─┼─┤
|
1L 3s
|
20, 2
|
10:1
|
├─────────────────┼─┼─┼─┼─┤
|
1L 4s
|
18, 2
|
9:1
|
├───────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13edo
|
2, 2
|
1:1
|
Generators 25\26 and 1\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────┼┤
|
1L 1s
|
25, 1
|
25:1
|
├───────────────────────┼┼┤
|
1L 2s
|
24, 1
|
24:1
|
├──────────────────────┼┼┼┤
|
1L 3s
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┼┤
|
1L 4s
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 24s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 7\26 and 6\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼─────┼──────┼─────┤
|
2L 2s
|
7, 6
|
7:6
|
├┼─────┼─────┼┼─────┼─────┤
|
4L 2s (citric)
|
6, 1
|
6:1
|
├┼┼────┼┼────┼┼┼────┼┼────┤
|
4L 6s (lime)
|
5, 1
|
5:1
|
├┼┼┼───┼┼┼───┼┼┼┼───┼┼┼───┤
|
4L 10s
|
4, 1
|
4:1
|
├┼┼┼┼──┼┼┼┼──┼┼┼┼┼──┼┼┼┼──┤
|
4L 14s
|
3, 1
|
3:1
|
├┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼─┤
|
4L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 8\26 and 5\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼────┼───────┼────┤
|
2L 2s
|
8, 5
|
8:5
|
├──┼────┼────┼──┼────┼────┤
|
4L 2s (citric)
|
5, 3
|
5:3
|
├──┼──┼─┼──┼─┼──┼──┼─┼──┼─┤
|
6L 4s (lemon)
|
3, 2
|
3:2
|
├┼─┼┼─┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼─┤
|
10L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 9\26 and 4\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼───┼────────┼───┤
|
2L 2s
|
9, 4
|
9:4
|
├────┼───┼───┼────┼───┼───┤
|
2L 4s (malic)
|
5, 4
|
5:4
|
├┼───┼───┼───┼┼───┼───┼───┤
|
6L 2s (ekic)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┼┼┼──┼┼──┼┼──┤
|
6L 8s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┼┼┼─┤
|
6L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 10\26 and 3\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼──┼─────────┼──┤
|
2L 2s
|
10, 3
|
10:3
|
├──────┼──┼──┼──────┼──┼──┤
|
2L 4s (malic)
|
7, 3
|
7:3
|
├───┼──┼──┼──┼───┼──┼──┼──┤
|
2L 6s (subaric)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼┼──┼──┼──┼──┤
|
8L 2s (taric)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┼┼─┤
|
8L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 11\26 and 2\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼─┼──────────┼─┤
|
2L 2s
|
11, 2
|
11:2
|
├────────┼─┼─┼────────┼─┼─┤
|
2L 4s (malic)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼──────┼─┼─┼─┤
|
2L 6s (subaric)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼────┼─┼─┼─┼─┤
|
2L 8s (jaric)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼──┼─┼─┼─┼─┼─┤
|
2L 10s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┼─┤
|
12L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
Generators 12\26 and 1\26
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼┼───────────┼┤
|
2L 2s
|
12, 1
|
12:1
|
├──────────┼┼┼──────────┼┼┤
|
2L 4s (malic)
|
11, 1
|
11:1
|
├─────────┼┼┼┼─────────┼┼┼┤
|
2L 6s (subaric)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼────────┼┼┼┼┤
|
2L 8s (jaric)
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼───────┼┼┼┼┼┤
|
2L 10s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼──────┼┼┼┼┼┼┤
|
2L 12s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼┤
|
2L 14s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼┤
|
2L 16s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼┤
|
2L 18s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼┤
|
2L 20s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 22s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
26edo
|
1, 1
|
1:1
|
27edo
These are all moment of symmetry scales in 27edo.
Single-period MOS scales
Generators 14\27 and 13\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼────────────┤
|
1L 1s
|
14, 13
|
14:13
|
├┼────────────┼────────────┤
|
2L 1s
|
13, 1
|
13:1
|
├┼┼───────────┼┼───────────┤
|
2L 3s
|
12, 1
|
12:1
|
├┼┼┼──────────┼┼┼──────────┤
|
2L 5s (antidiatonic)
|
11, 1
|
11:1
|
├┼┼┼┼─────────┼┼┼┼─────────┤
|
2L 7s (balzano)
|
10, 1
|
10:1
|
├┼┼┼┼┼────────┼┼┼┼┼────────┤
|
2L 9s
|
9, 1
|
9:1
|
├┼┼┼┼┼┼───────┼┼┼┼┼┼───────┤
|
2L 11s
|
8, 1
|
8:1
|
├┼┼┼┼┼┼┼──────┼┼┼┼┼┼┼──────┤
|
2L 13s
|
7, 1
|
7:1
|
├┼┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼┼─────┤
|
2L 15s
|
6, 1
|
6:1
|
├┼┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼┼────┤
|
2L 17s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼┼───┤
|
2L 19s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼┼──┤
|
2L 21s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼┼─┤
|
2L 23s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 15\27 and 12\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼───────────┤
|
1L 1s
|
15, 12
|
5:4
|
├──┼───────────┼───────────┤
|
2L 1s
|
12, 3
|
4:1
|
├──┼──┼────────┼──┼────────┤
|
2L 3s
|
9, 3
|
3:1
|
├──┼──┼──┼─────┼──┼──┼─────┤
|
2L 5s (antidiatonic)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9edo
|
3, 3
|
1:1
|
Generators 16\27 and 11\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼──────────┤
|
1L 1s
|
16, 11
|
16:11
|
├────┼──────────┼──────────┤
|
2L 1s
|
11, 5
|
11:5
|
├────┼────┼─────┼────┼─────┤
|
2L 3s
|
6, 5
|
6:5
|
├────┼────┼────┼┼────┼────┼┤
|
5L 2s (diatonic)
|
5, 1
|
5:1
|
├───┼┼───┼┼───┼┼┼───┼┼───┼┼┤
|
5L 7s
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼──┼┼┼┼──┼┼┼──┼┼┼┤
|
5L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼─┼┼┼┼┼─┼┼┼┼─┼┼┼┼┤
|
5L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 17\27 and 10\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼─────────┤
|
1L 1s
|
17, 10
|
17:10
|
├──────┼─────────┼─────────┤
|
2L 1s
|
10, 7
|
10:7
|
├──────┼──────┼──┼──────┼──┤
|
3L 2s
|
7, 3
|
7:3
|
├───┼──┼───┼──┼──┼───┼──┼──┤
|
3L 5s (checkertonic)
|
4, 3
|
4:3
|
├┼──┼──┼┼──┼──┼──┼┼──┼──┼──┤
|
8L 3s
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┤
|
8L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 18\27 and 9\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼────────┤
|
1L 1s
|
18, 9
|
2:1
|
├────────┼────────┼────────┤
|
3edo
|
9, 9
|
1:1
|
Generators 19\27 and 8\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼───────┤
|
1L 1s
|
19, 8
|
19:8
|
├──────────┼───────┼───────┤
|
1L 2s
|
11, 8
|
11:8
|
├──┼───────┼───────┼───────┤
|
3L 1s
|
8, 3
|
8:3
|
├──┼──┼────┼──┼────┼──┼────┤
|
3L 4s (mosh)
|
5, 3
|
5:3
|
├──┼──┼──┼─┼──┼──┼─┼──┼──┼─┤
|
7L 3s (dicoid)
|
3, 2
|
3:2
|
├┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┤
|
10L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 20\27 and 7\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼──────┤
|
1L 1s
|
20, 7
|
20:7
|
├────────────┼──────┼──────┤
|
1L 2s
|
13, 7
|
13:7
|
├─────┼──────┼──────┼──────┤
|
3L 1s
|
7, 6
|
7:6
|
├─────┼─────┼┼─────┼┼─────┼┤
|
4L 3s (smitonic)
|
6, 1
|
6:1
|
├────┼┼────┼┼┼────┼┼┼────┼┼┤
|
4L 7s
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┼┼───┼┼┼┼───┼┼┼┤
|
4L 11s
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┤
|
4L 15s
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┤
|
4L 19s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 21\27 and 6\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼─────┤
|
1L 1s
|
21, 6
|
7:2
|
├──────────────┼─────┼─────┤
|
1L 2s
|
15, 6
|
5:2
|
├────────┼─────┼─────┼─────┤
|
1L 3s
|
9, 6
|
3:2
|
├──┼─────┼─────┼─────┼─────┤
|
4L 1s
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9edo
|
3, 3
|
1:1
|
Generators 22\27 and 5\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼────┤
|
1L 1s
|
22, 5
|
22:5
|
├────────────────┼────┼────┤
|
1L 2s
|
17, 5
|
17:5
|
├───────────┼────┼────┼────┤
|
1L 3s
|
12, 5
|
12:5
|
├──────┼────┼────┼────┼────┤
|
1L 4s
|
7, 5
|
7:5
|
├─┼────┼────┼────┼────┼────┤
|
5L 1s (machinoid)
|
5, 2
|
5:2
|
├─┼─┼──┼─┼──┼─┼──┼─┼──┼─┼──┤
|
5L 6s
|
3, 2
|
3:2
|
├─┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┤
|
11L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 23\27 and 4\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼───┤
|
1L 1s
|
23, 4
|
23:4
|
├──────────────────┼───┼───┤
|
1L 2s
|
19, 4
|
19:4
|
├──────────────┼───┼───┼───┤
|
1L 3s
|
15, 4
|
15:4
|
├──────────┼───┼───┼───┼───┤
|
1L 4s
|
11, 4
|
11:4
|
├──────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
7, 4
|
7:4
|
├──┼───┼───┼───┼───┼───┼───┤
|
6L 1s (archaeotonic)
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┼──┼┼──┼┼──┼┤
|
7L 6s
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
7L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 24\27 and 3\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼──┤
|
1L 1s
|
24, 3
|
8:1
|
├────────────────────┼──┼──┤
|
1L 2s
|
21, 3
|
7:1
|
├─────────────────┼──┼──┼──┤
|
1L 3s
|
18, 3
|
6:1
|
├──────────────┼──┼──┼──┼──┤
|
1L 4s
|
15, 3
|
5:1
|
├───────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
12, 3
|
4:1
|
├────────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9edo
|
3, 3
|
1:1
|
Generators 25\27 and 2\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────┼─┤
|
1L 1s
|
25, 2
|
25:2
|
├──────────────────────┼─┼─┤
|
1L 2s
|
23, 2
|
23:2
|
├────────────────────┼─┼─┼─┤
|
1L 3s
|
21, 2
|
21:2
|
├──────────────────┼─┼─┼─┼─┤
|
1L 4s
|
19, 2
|
19:2
|
├────────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
17, 2
|
17:2
|
├──────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 12s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
13L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 26\27 and 1\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────────┼┤
|
1L 1s
|
26, 1
|
26:1
|
├────────────────────────┼┼┤
|
1L 2s
|
25, 1
|
25:1
|
├───────────────────────┼┼┼┤
|
1L 3s
|
24, 1
|
24:1
|
├──────────────────────┼┼┼┼┤
|
1L 4s
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 24s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 25s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Multi-period MOS scales
3 periods
Generators 5\27 and 4\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼───┼────┼───┼────┼───┤
|
3L 3s (triwood)
|
5, 4
|
5:4
|
├┼───┼───┼┼───┼───┼┼───┼───┤
|
6L 3s (hyrulic)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼┼──┼┼──┼┼┼──┼┼──┤
|
6L 9s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┤
|
6L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 6\27 and 3\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼──┼─────┼──┼─────┼──┤
|
3L 3s (triwood)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9edo
|
3, 3
|
1:1
|
Generators 7\27 and 2\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼─┼──────┼─┼──────┼─┤
|
3L 3s (triwood)
|
7, 2
|
7:2
|
├────┼─┼─┼────┼─┼─┼────┼─┼─┤
|
3L 6s (tcherepnin)
|
5, 2
|
5:2
|
├──┼─┼─┼─┼──┼─┼─┼─┼──┼─┼─┼─┤
|
3L 9s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼┼─┼─┼─┼─┼┼─┼─┼─┼─┤
|
12L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
Generators 8\27 and 1\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼┼───────┼┼───────┼┤
|
3L 3s (triwood)
|
8, 1
|
8:1
|
├──────┼┼┼──────┼┼┼──────┼┼┤
|
3L 6s (tcherepnin)
|
7, 1
|
7:1
|
├─────┼┼┼┼─────┼┼┼┼─────┼┼┼┤
|
3L 9s
|
6, 1
|
6:1
|
├────┼┼┼┼┼────┼┼┼┼┼────┼┼┼┼┤
|
3L 12s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼───┼┼┼┼┼┼───┼┼┼┼┼┤
|
3L 15s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼──┼┼┼┼┼┼┼──┼┼┼┼┼┼┤
|
3L 18s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┤
|
3L 21s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
9 periods
Generators 2\27 and 1\27
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
9L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
27edo
|
1, 1
|
1:1
|
28edo
These are all moment of symmetry scales in 28edo.
Single-period MOS scales
Generators 15\28 and 13\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼────────────┤
|
1L 1s
|
15, 13
|
15:13
|
├─┼────────────┼────────────┤
|
2L 1s
|
13, 2
|
13:2
|
├─┼─┼──────────┼─┼──────────┤
|
2L 3s
|
11, 2
|
11:2
|
├─┼─┼─┼────────┼─┼─┼────────┤
|
2L 5s (antidiatonic)
|
9, 2
|
9:2
|
├─┼─┼─┼─┼──────┼─┼─┼─┼──────┤
|
2L 7s (balzano)
|
7, 2
|
7:2
|
├─┼─┼─┼─┼─┼────┼─┼─┼─┼─┼────┤
|
2L 9s
|
5, 2
|
5:2
|
├─┼─┼─┼─┼─┼─┼──┼─┼─┼─┼─┼─┼──┤
|
2L 11s
|
3, 2
|
3:2
|
├─┼─┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┼─┼┤
|
13L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 16\28 and 12\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼───────────┤
|
1L 1s
|
16, 12
|
4:3
|
├───┼───────────┼───────────┤
|
2L 1s
|
12, 4
|
3:1
|
├───┼───┼───────┼───┼───────┤
|
2L 3s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┼───┼───┤
|
7edo
|
4, 4
|
1:1
|
Generators 17\28 and 11\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼──────────┤
|
1L 1s
|
17, 11
|
17:11
|
├─────┼──────────┼──────────┤
|
2L 1s
|
11, 6
|
11:6
|
├─────┼─────┼────┼─────┼────┤
|
3L 2s
|
6, 5
|
6:5
|
├┼────┼┼────┼────┼┼────┼────┤
|
5L 3s (oneirotonic)
|
5, 1
|
5:1
|
├┼┼───┼┼┼───┼┼───┼┼┼───┼┼───┤
|
5L 8s
|
4, 1
|
4:1
|
├┼┼┼──┼┼┼┼──┼┼┼──┼┼┼┼──┼┼┼──┤
|
5L 13s
|
3, 1
|
3:1
|
├┼┼┼┼─┼┼┼┼┼─┼┼┼┼─┼┼┼┼┼─┼┼┼┼─┤
|
5L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 18\28 and 10\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼─────────┤
|
1L 1s
|
18, 10
|
9:5
|
├───────┼─────────┼─────────┤
|
2L 1s
|
10, 8
|
5:4
|
├───────┼───────┼─┼───────┼─┤
|
3L 2s
|
8, 2
|
4:1
|
├─────┼─┼─────┼─┼─┼─────┼─┼─┤
|
3L 5s (checkertonic)
|
6, 2
|
3:1
|
├───┼─┼─┼───┼─┼─┼─┼───┼─┼─┼─┤
|
3L 8s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 19\28 and 9\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼────────┤
|
1L 1s
|
19, 9
|
19:9
|
├─────────┼────────┼────────┤
|
1L 2s
|
10, 9
|
10:9
|
├┼────────┼────────┼────────┤
|
3L 1s
|
9, 1
|
9:1
|
├┼┼───────┼┼───────┼┼───────┤
|
3L 4s (mosh)
|
8, 1
|
8:1
|
├┼┼┼──────┼┼┼──────┼┼┼──────┤
|
3L 7s (sephiroid)
|
7, 1
|
7:1
|
├┼┼┼┼─────┼┼┼┼─────┼┼┼┼─────┤
|
3L 10s
|
6, 1
|
6:1
|
├┼┼┼┼┼────┼┼┼┼┼────┼┼┼┼┼────┤
|
3L 13s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼───┼┼┼┼┼┼───┼┼┼┼┼┼───┤
|
3L 16s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼──┼┼┼┼┼┼┼──┼┼┼┼┼┼┼──┤
|
3L 19s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼─┤
|
3L 22s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 20\28 and 8\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼───────┤
|
1L 1s
|
20, 8
|
5:2
|
├───────────┼───────┼───────┤
|
1L 2s
|
12, 8
|
3:2
|
├───┼───────┼───────┼───────┤
|
3L 1s
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┼───┼───┤
|
7edo
|
4, 4
|
1:1
|
Generators 21\28 and 7\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼──────┤
|
1L 1s
|
21, 7
|
3:1
|
├─────────────┼──────┼──────┤
|
1L 2s
|
14, 7
|
2:1
|
├──────┼──────┼──────┼──────┤
|
4edo
|
7, 7
|
1:1
|
Generators 22\28 and 6\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼─────┤
|
1L 1s
|
22, 6
|
11:3
|
├───────────────┼─────┼─────┤
|
1L 2s
|
16, 6
|
8:3
|
├─────────┼─────┼─────┼─────┤
|
1L 3s
|
10, 6
|
5:3
|
├───┼─────┼─────┼─────┼─────┤
|
4L 1s
|
6, 4
|
3:2
|
├───┼───┼─┼───┼─┼───┼─┼───┼─┤
|
5L 4s (semiquartal)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 23\28 and 5\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼────┤
|
1L 1s
|
23, 5
|
23:5
|
├─────────────────┼────┼────┤
|
1L 2s
|
18, 5
|
18:5
|
├────────────┼────┼────┼────┤
|
1L 3s
|
13, 5
|
13:5
|
├───────┼────┼────┼────┼────┤
|
1L 4s
|
8, 5
|
8:5
|
├──┼────┼────┼────┼────┼────┤
|
5L 1s (machinoid)
|
5, 3
|
5:3
|
├──┼──┼─┼──┼─┼──┼─┼──┼─┼──┼─┤
|
6L 5s
|
3, 2
|
3:2
|
├┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
11L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 24\28 and 4\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼───┤
|
1L 1s
|
24, 4
|
6:1
|
├───────────────────┼───┼───┤
|
1L 2s
|
20, 4
|
5:1
|
├───────────────┼───┼───┼───┤
|
1L 3s
|
16, 4
|
4:1
|
├───────────┼───┼───┼───┼───┤
|
1L 4s
|
12, 4
|
3:1
|
├───────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
8, 4
|
2:1
|
├───┼───┼───┼───┼───┼───┼───┤
|
7edo
|
4, 4
|
1:1
|
Generators 25\28 and 3\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────┼──┤
|
1L 1s
|
25, 3
|
25:3
|
├─────────────────────┼──┼──┤
|
1L 2s
|
22, 3
|
22:3
|
├──────────────────┼──┼──┼──┤
|
1L 3s
|
19, 3
|
19:3
|
├───────────────┼──┼──┼──┼──┤
|
1L 4s
|
16, 3
|
16:3
|
├────────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
13, 3
|
13:3
|
├─────────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
10, 3
|
10:3
|
├──────┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
7, 3
|
7:3
|
├───┼──┼──┼──┼──┼──┼──┼──┼──┤
|
1L 8s (antisubneutralic)
|
4, 3
|
4:3
|
├┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9L 1s (sinatonic)
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┤
|
9L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 26\28 and 2\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────────┼─┤
|
1L 1s
|
26, 2
|
13:1
|
├───────────────────────┼─┼─┤
|
1L 2s
|
24, 2
|
12:1
|
├─────────────────────┼─┼─┼─┤
|
1L 3s
|
22, 2
|
11:1
|
├───────────────────┼─┼─┼─┼─┤
|
1L 4s
|
20, 2
|
10:1
|
├─────────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
18, 2
|
9:1
|
├───────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 12s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 27\28 and 1\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────────┼┤
|
1L 1s
|
27, 1
|
27:1
|
├─────────────────────────┼┼┤
|
1L 2s
|
26, 1
|
26:1
|
├────────────────────────┼┼┼┤
|
1L 3s
|
25, 1
|
25:1
|
├───────────────────────┼┼┼┼┤
|
1L 4s
|
24, 1
|
24:1
|
├──────────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 24s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 25s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 26s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 8\28 and 6\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼─────┼───────┼─────┤
|
2L 2s
|
8, 6
|
4:3
|
├─┼─────┼─────┼─┼─────┼─────┤
|
4L 2s (citric)
|
6, 2
|
3:1
|
├─┼─┼───┼─┼───┼─┼─┼───┼─┼───┤
|
4L 6s (lime)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 9\28 and 5\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼────┼────────┼────┤
|
2L 2s
|
9, 5
|
9:5
|
├───┼────┼────┼───┼────┼────┤
|
4L 2s (citric)
|
5, 4
|
5:4
|
├───┼───┼┼───┼┼───┼───┼┼───┼┤
|
6L 4s (lemon)
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┼──┼┼──┼┼┼──┼┼┤
|
6L 10s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼─┼┼┼┼─┼┼┼┤
|
6L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 10\28 and 4\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼───┼─────────┼───┤
|
2L 2s
|
10, 4
|
5:2
|
├─────┼───┼───┼─────┼───┼───┤
|
2L 4s (malic)
|
6, 4
|
3:2
|
├─┼───┼───┼───┼─┼───┼───┼───┤
|
6L 2s (ekic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 11\28 and 3\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼──┼──────────┼──┤
|
2L 2s
|
11, 3
|
11:3
|
├───────┼──┼──┼───────┼──┼──┤
|
2L 4s (malic)
|
8, 3
|
8:3
|
├────┼──┼──┼──┼────┼──┼──┼──┤
|
2L 6s (subaric)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼─┼──┼──┼──┼──┤
|
8L 2s (taric)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼─┼┼─┼┼─┼┼─┼┤
|
10L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 12\28 and 2\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼─┼───────────┼─┤
|
2L 2s
|
12, 2
|
6:1
|
├─────────┼─┼─┼─────────┼─┼─┤
|
2L 4s (malic)
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼───────┼─┼─┼─┤
|
2L 6s (subaric)
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─────┼─┼─┼─┼─┤
|
2L 8s (jaric)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼───┼─┼─┼─┼─┼─┤
|
2L 10s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14edo
|
2, 2
|
1:1
|
Generators 13\28 and 1\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼┼────────────┼┤
|
2L 2s
|
13, 1
|
13:1
|
├───────────┼┼┼───────────┼┼┤
|
2L 4s (malic)
|
12, 1
|
12:1
|
├──────────┼┼┼┼──────────┼┼┼┤
|
2L 6s (subaric)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼─────────┼┼┼┼┤
|
2L 8s (jaric)
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼────────┼┼┼┼┼┤
|
2L 10s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼───────┼┼┼┼┼┼┤
|
2L 12s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼──────┼┼┼┼┼┼┼┤
|
2L 14s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼┼┤
|
2L 16s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼┼┤
|
2L 18s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼┼┤
|
2L 20s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 22s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 24s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
4 periods
Generators 4\28 and 3\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼──┼───┼──┼───┼──┼───┼──┤
|
4L 4s (tetrawood)
|
4, 3
|
4:3
|
├┼──┼──┼┼──┼──┼┼──┼──┼┼──┼──┤
|
8L 4s
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┼┼┼─┼┼─┤
|
8L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 5\28 and 2\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼─┼────┼─┼────┼─┼────┼─┤
|
4L 4s (tetrawood)
|
5, 2
|
5:2
|
├──┼─┼─┼──┼─┼─┼──┼─┼─┼──┼─┼─┤
|
4L 8s
|
3, 2
|
3:2
|
├┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┤
|
12L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
Generators 6\28 and 1\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼┼─────┼┼─────┼┼─────┼┤
|
4L 4s (tetrawood)
|
6, 1
|
6:1
|
├────┼┼┼────┼┼┼────┼┼┼────┼┼┤
|
4L 8s
|
5, 1
|
5:1
|
├───┼┼┼┼───┼┼┼┼───┼┼┼┼───┼┼┼┤
|
4L 12s
|
4, 1
|
4:1
|
├──┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┤
|
4L 16s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┤
|
4L 20s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
7 periods
Generators 3\28 and 1\28
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼┼──┼┼──┼┼──┼┼──┼┼──┼┼──┼┤
|
7L 7s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┤
|
7L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
28edo
|
1, 1
|
1:1
|
29edo
These are all moment of symmetry scales in 29edo.
Single-period MOS scales
Generators 15\29 and 14\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────┼─────────────┤
|
1L 1s
|
15, 14
|
15:14
|
├┼─────────────┼─────────────┤
|
2L 1s
|
14, 1
|
14:1
|
├┼┼────────────┼┼────────────┤
|
2L 3s
|
13, 1
|
13:1
|
├┼┼┼───────────┼┼┼───────────┤
|
2L 5s (antidiatonic)
|
12, 1
|
12:1
|
├┼┼┼┼──────────┼┼┼┼──────────┤
|
2L 7s (balzano)
|
11, 1
|
11:1
|
├┼┼┼┼┼─────────┼┼┼┼┼─────────┤
|
2L 9s
|
10, 1
|
10:1
|
├┼┼┼┼┼┼────────┼┼┼┼┼┼────────┤
|
2L 11s
|
9, 1
|
9:1
|
├┼┼┼┼┼┼┼───────┼┼┼┼┼┼┼───────┤
|
2L 13s
|
8, 1
|
8:1
|
├┼┼┼┼┼┼┼┼──────┼┼┼┼┼┼┼┼──────┤
|
2L 15s
|
7, 1
|
7:1
|
├┼┼┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼┼┼─────┤
|
2L 17s
|
6, 1
|
6:1
|
├┼┼┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼┼┼────┤
|
2L 19s
|
5, 1
|
5:1
|
├┼┼┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼┼┼───┤
|
2L 21s
|
4, 1
|
4:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼┼┼──┤
|
2L 23s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼┼┼─┤
|
2L 25s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 16\29 and 13\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼────────────┤
|
1L 1s
|
16, 13
|
16:13
|
├──┼────────────┼────────────┤
|
2L 1s
|
13, 3
|
13:3
|
├──┼──┼─────────┼──┼─────────┤
|
2L 3s
|
10, 3
|
10:3
|
├──┼──┼──┼──────┼──┼──┼──────┤
|
2L 5s (antidiatonic)
|
7, 3
|
7:3
|
├──┼──┼──┼──┼───┼──┼──┼──┼───┤
|
2L 7s (balzano)
|
4, 3
|
4:3
|
├──┼──┼──┼──┼──┼┼──┼──┼──┼──┼┤
|
9L 2s
|
3, 1
|
3:1
|
├─┼┼─┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┼┼─┼┼┤
|
9L 11s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 17\29 and 12\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼───────────┤
|
1L 1s
|
17, 12
|
17:12
|
├────┼───────────┼───────────┤
|
2L 1s
|
12, 5
|
12:5
|
├────┼────┼──────┼────┼──────┤
|
2L 3s
|
7, 5
|
7:5
|
├────┼────┼────┼─┼────┼────┼─┤
|
5L 2s (diatonic)
|
5, 2
|
5:2
|
├──┼─┼──┼─┼──┼─┼─┼──┼─┼──┼─┼─┤
|
5L 7s
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼┼─┼─┼─┼┼─┼─┼┼─┼─┼─┤
|
12L 5s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 18\29 and 11\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼──────────┤
|
1L 1s
|
18, 11
|
18:11
|
├──────┼──────────┼──────────┤
|
2L 1s
|
11, 7
|
11:7
|
├──────┼──────┼───┼──────┼───┤
|
3L 2s
|
7, 4
|
7:4
|
├──┼───┼──┼───┼───┼──┼───┼───┤
|
5L 3s (oneirotonic)
|
4, 3
|
4:3
|
├──┼──┼┼──┼──┼┼──┼┼──┼──┼┼──┼┤
|
8L 5s
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼─┼┼┼─┼┼┼─┼┼─┼┼┼─┼┼┤
|
8L 13s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 19\29 and 10\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼─────────┤
|
1L 1s
|
19, 10
|
19:10
|
├────────┼─────────┼─────────┤
|
2L 1s
|
10, 9
|
10:9
|
├────────┼────────┼┼────────┼┤
|
3L 2s
|
9, 1
|
9:1
|
├───────┼┼───────┼┼┼───────┼┼┤
|
3L 5s (checkertonic)
|
8, 1
|
8:1
|
├──────┼┼┼──────┼┼┼┼──────┼┼┼┤
|
3L 8s
|
7, 1
|
7:1
|
├─────┼┼┼┼─────┼┼┼┼┼─────┼┼┼┼┤
|
3L 11s
|
6, 1
|
6:1
|
├────┼┼┼┼┼────┼┼┼┼┼┼────┼┼┼┼┼┤
|
3L 14s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼───┼┼┼┼┼┼┼───┼┼┼┼┼┼┤
|
3L 17s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┤
|
3L 20s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┤
|
3L 23s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 20\29 and 9\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼────────┤
|
1L 1s
|
20, 9
|
20:9
|
├──────────┼────────┼────────┤
|
1L 2s
|
11, 9
|
11:9
|
├─┼────────┼────────┼────────┤
|
3L 1s
|
9, 2
|
9:2
|
├─┼─┼──────┼─┼──────┼─┼──────┤
|
3L 4s (mosh)
|
7, 2
|
7:2
|
├─┼─┼─┼────┼─┼─┼────┼─┼─┼────┤
|
3L 7s (sephiroid)
|
5, 2
|
5:2
|
├─┼─┼─┼─┼──┼─┼─┼─┼──┼─┼─┼─┼──┤
|
3L 10s
|
3, 2
|
3:2
|
├─┼─┼─┼─┼─┼┼─┼─┼─┼─┼┼─┼─┼─┼─┼┤
|
13L 3s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 21\29 and 8\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼───────┤
|
1L 1s
|
21, 8
|
21:8
|
├────────────┼───────┼───────┤
|
1L 2s
|
13, 8
|
13:8
|
├────┼───────┼───────┼───────┤
|
3L 1s
|
8, 5
|
8:5
|
├────┼────┼──┼────┼──┼────┼──┤
|
4L 3s (smitonic)
|
5, 3
|
5:3
|
├─┼──┼─┼──┼──┼─┼──┼──┼─┼──┼──┤
|
7L 4s
|
3, 2
|
3:2
|
├─┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┼─┼─┼┼─┼┤
|
11L 7s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 22\29 and 7\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼──────┤
|
1L 1s
|
22, 7
|
22:7
|
├──────────────┼──────┼──────┤
|
1L 2s
|
15, 7
|
15:7
|
├───────┼──────┼──────┼──────┤
|
1L 3s
|
8, 7
|
8:7
|
├┼──────┼──────┼──────┼──────┤
|
4L 1s
|
7, 1
|
7:1
|
├┼┼─────┼┼─────┼┼─────┼┼─────┤
|
4L 5s (gramitonic)
|
6, 1
|
6:1
|
├┼┼┼────┼┼┼────┼┼┼────┼┼┼────┤
|
4L 9s
|
5, 1
|
5:1
|
├┼┼┼┼───┼┼┼┼───┼┼┼┼───┼┼┼┼───┤
|
4L 13s
|
4, 1
|
4:1
|
├┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼──┤
|
4L 17s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼─┤
|
4L 21s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 23\29 and 6\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼─────┤
|
1L 1s
|
23, 6
|
23:6
|
├────────────────┼─────┼─────┤
|
1L 2s
|
17, 6
|
17:6
|
├──────────┼─────┼─────┼─────┤
|
1L 3s
|
11, 6
|
11:6
|
├────┼─────┼─────┼─────┼─────┤
|
4L 1s
|
6, 5
|
6:5
|
├────┼────┼┼────┼┼────┼┼────┼┤
|
5L 4s (semiquartal)
|
5, 1
|
5:1
|
├───┼┼───┼┼┼───┼┼┼───┼┼┼───┼┼┤
|
5L 9s
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┤
|
5L 14s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
5L 19s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 24\29 and 5\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼────┤
|
1L 1s
|
24, 5
|
24:5
|
├──────────────────┼────┼────┤
|
1L 2s
|
19, 5
|
19:5
|
├─────────────┼────┼────┼────┤
|
1L 3s
|
14, 5
|
14:5
|
├────────┼────┼────┼────┼────┤
|
1L 4s
|
9, 5
|
9:5
|
├───┼────┼────┼────┼────┼────┤
|
5L 1s (machinoid)
|
5, 4
|
5:4
|
├───┼───┼┼───┼┼───┼┼───┼┼───┼┤
|
6L 5s
|
4, 1
|
4:1
|
├──┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┤
|
6L 11s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
6L 17s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 25\29 and 4\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────┼───┤
|
1L 1s
|
25, 4
|
25:4
|
├────────────────────┼───┼───┤
|
1L 2s
|
21, 4
|
21:4
|
├────────────────┼───┼───┼───┤
|
1L 3s
|
17, 4
|
17:4
|
├────────────┼───┼───┼───┼───┤
|
1L 4s
|
13, 4
|
13:4
|
├────────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
9, 4
|
9:4
|
├────┼───┼───┼───┼───┼───┼───┤
|
1L 6s (onyx)
|
5, 4
|
5:4
|
├┼───┼───┼───┼───┼───┼───┼───┤
|
7L 1s (pine)
|
4, 1
|
4:1
|
├┼┼──┼┼──┼┼──┼┼──┼┼──┼┼──┼┼──┤
|
7L 8s
|
3, 1
|
3:1
|
├┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼┼─┤
|
7L 15s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 26\29 and 3\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────────┼──┤
|
1L 1s
|
26, 3
|
26:3
|
├──────────────────────┼──┼──┤
|
1L 2s
|
23, 3
|
23:3
|
├───────────────────┼──┼──┼──┤
|
1L 3s
|
20, 3
|
20:3
|
├────────────────┼──┼──┼──┼──┤
|
1L 4s
|
17, 3
|
17:3
|
├─────────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
14, 3
|
14:3
|
├──────────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
11, 3
|
11:3
|
├───────┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
8, 3
|
8:3
|
├────┼──┼──┼──┼──┼──┼──┼──┼──┤
|
1L 8s (antisubneutralic)
|
5, 3
|
5:3
|
├─┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
9L 1s (sinatonic)
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
10L 9s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 27\29 and 2\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────────┼─┤
|
1L 1s
|
27, 2
|
27:2
|
├────────────────────────┼─┼─┤
|
1L 2s
|
25, 2
|
25:2
|
├──────────────────────┼─┼─┼─┤
|
1L 3s
|
23, 2
|
23:2
|
├────────────────────┼─┼─┼─┼─┤
|
1L 4s
|
21, 2
|
21:2
|
├──────────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
19, 2
|
19:2
|
├────────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
17, 2
|
17:2
|
├──────────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
15, 2
|
15:2
|
├────────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
13, 2
|
13:2
|
├──────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 12s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 13s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
14L 1s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
Generators 28\29 and 1\29
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────────┼┤
|
1L 1s
|
28, 1
|
28:1
|
├──────────────────────────┼┼┤
|
1L 2s
|
27, 1
|
27:1
|
├─────────────────────────┼┼┼┤
|
1L 3s
|
26, 1
|
26:1
|
├────────────────────────┼┼┼┼┤
|
1L 4s
|
25, 1
|
25:1
|
├───────────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
24, 1
|
24:1
|
├──────────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 24s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 25s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 26s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 27s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
29edo
|
1, 1
|
1:1
|
30edo
These are all moment of symmetry scales in 30edo.
Single-period MOS scales
Generators 16\30 and 14\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────┼─────────────┤
|
1L 1s
|
16, 14
|
8:7
|
├─┼─────────────┼─────────────┤
|
2L 1s
|
14, 2
|
7:1
|
├─┼─┼───────────┼─┼───────────┤
|
2L 3s
|
12, 2
|
6:1
|
├─┼─┼─┼─────────┼─┼─┼─────────┤
|
2L 5s (antidiatonic)
|
10, 2
|
5:1
|
├─┼─┼─┼─┼───────┼─┼─┼─┼───────┤
|
2L 7s (balzano)
|
8, 2
|
4:1
|
├─┼─┼─┼─┼─┼─────┼─┼─┼─┼─┼─────┤
|
2L 9s
|
6, 2
|
3:1
|
├─┼─┼─┼─┼─┼─┼───┼─┼─┼─┼─┼─┼───┤
|
2L 11s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 17\30 and 13\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────┼────────────┤
|
1L 1s
|
17, 13
|
17:13
|
├───┼────────────┼────────────┤
|
2L 1s
|
13, 4
|
13:4
|
├───┼───┼────────┼───┼────────┤
|
2L 3s
|
9, 4
|
9:4
|
├───┼───┼───┼────┼───┼───┼────┤
|
2L 5s (antidiatonic)
|
5, 4
|
5:4
|
├───┼───┼───┼───┼┼───┼───┼───┼┤
|
7L 2s (armotonic)
|
4, 1
|
4:1
|
├──┼┼──┼┼──┼┼──┼┼┼──┼┼──┼┼──┼┼┤
|
7L 9s
|
3, 1
|
3:1
|
├─┼┼┼─┼┼┼─┼┼┼─┼┼┼┼─┼┼┼─┼┼┼─┼┼┼┤
|
7L 16s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 18\30 and 12\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────┼───────────┤
|
1L 1s
|
18, 12
|
3:2
|
├─────┼───────────┼───────────┤
|
2L 1s
|
12, 6
|
2:1
|
├─────┼─────┼─────┼─────┼─────┤
|
5edo
|
6, 6
|
1:1
|
Generators 19\30 and 11\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────┼──────────┤
|
1L 1s
|
19, 11
|
19:11
|
├───────┼──────────┼──────────┤
|
2L 1s
|
11, 8
|
11:8
|
├───────┼───────┼──┼───────┼──┤
|
3L 2s
|
8, 3
|
8:3
|
├────┼──┼────┼──┼──┼────┼──┼──┤
|
3L 5s (checkertonic)
|
5, 3
|
5:3
|
├─┼──┼──┼─┼──┼──┼──┼─┼──┼──┼──┤
|
8L 3s
|
3, 2
|
3:2
|
├─┼─┼┼─┼┼─┼─┼┼─┼┼─┼┼─┼─┼┼─┼┼─┼┤
|
11L 8s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 20\30 and 10\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────┼─────────┤
|
1L 1s
|
20, 10
|
2:1
|
├─────────┼─────────┼─────────┤
|
3edo
|
10, 10
|
1:1
|
Generators 21\30 and 9\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────┼────────┤
|
1L 1s
|
21, 9
|
7:3
|
├───────────┼────────┼────────┤
|
1L 2s
|
12, 9
|
4:3
|
├──┼────────┼────────┼────────┤
|
3L 1s
|
9, 3
|
3:1
|
├──┼──┼─────┼──┼─────┼──┼─────┤
|
3L 4s (mosh)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
10edo
|
3, 3
|
1:1
|
Generators 22\30 and 8\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────┼───────┤
|
1L 1s
|
22, 8
|
11:4
|
├─────────────┼───────┼───────┤
|
1L 2s
|
14, 8
|
7:4
|
├─────┼───────┼───────┼───────┤
|
3L 1s
|
8, 6
|
4:3
|
├─────┼─────┼─┼─────┼─┼─────┼─┤
|
4L 3s (smitonic)
|
6, 2
|
3:1
|
├───┼─┼───┼─┼─┼───┼─┼─┼───┼─┼─┤
|
4L 7s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 23\30 and 7\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────┼──────┤
|
1L 1s
|
23, 7
|
23:7
|
├───────────────┼──────┼──────┤
|
1L 2s
|
16, 7
|
16:7
|
├────────┼──────┼──────┼──────┤
|
1L 3s
|
9, 7
|
9:7
|
├─┼──────┼──────┼──────┼──────┤
|
4L 1s
|
7, 2
|
7:2
|
├─┼─┼────┼─┼────┼─┼────┼─┼────┤
|
4L 5s (gramitonic)
|
5, 2
|
5:2
|
├─┼─┼─┼──┼─┼─┼──┼─┼─┼──┼─┼─┼──┤
|
4L 9s
|
3, 2
|
3:2
|
├─┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┼┼─┼─┼─┼┤
|
13L 4s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 24\30 and 6\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────┼─────┤
|
1L 1s
|
24, 6
|
4:1
|
├─────────────────┼─────┼─────┤
|
1L 2s
|
18, 6
|
3:1
|
├───────────┼─────┼─────┼─────┤
|
1L 3s
|
12, 6
|
2:1
|
├─────┼─────┼─────┼─────┼─────┤
|
5edo
|
6, 6
|
1:1
|
Generators 25\30 and 5\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────┼────┤
|
1L 1s
|
25, 5
|
5:1
|
├───────────────────┼────┼────┤
|
1L 2s
|
20, 5
|
4:1
|
├──────────────┼────┼────┼────┤
|
1L 3s
|
15, 5
|
3:1
|
├─────────┼────┼────┼────┼────┤
|
1L 4s
|
10, 5
|
2:1
|
├────┼────┼────┼────┼────┼────┤
|
6edo
|
5, 5
|
1:1
|
Generators 26\30 and 4\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────────────────┼───┤
|
1L 1s
|
26, 4
|
13:2
|
├─────────────────────┼───┼───┤
|
1L 2s
|
22, 4
|
11:2
|
├─────────────────┼───┼───┼───┤
|
1L 3s
|
18, 4
|
9:2
|
├─────────────┼───┼───┼───┼───┤
|
1L 4s
|
14, 4
|
7:2
|
├─────────┼───┼───┼───┼───┼───┤
|
1L 5s (antimachinoid)
|
10, 4
|
5:2
|
├─────┼───┼───┼───┼───┼───┼───┤
|
1L 6s (onyx)
|
6, 4
|
3:2
|
├─┼───┼───┼───┼───┼───┼───┼───┤
|
7L 1s (pine)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 27\30 and 3\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────────────────────┼──┤
|
1L 1s
|
27, 3
|
9:1
|
├───────────────────────┼──┼──┤
|
1L 2s
|
24, 3
|
8:1
|
├────────────────────┼──┼──┼──┤
|
1L 3s
|
21, 3
|
7:1
|
├─────────────────┼──┼──┼──┼──┤
|
1L 4s
|
18, 3
|
6:1
|
├──────────────┼──┼──┼──┼──┼──┤
|
1L 5s (antimachinoid)
|
15, 3
|
5:1
|
├───────────┼──┼──┼──┼──┼──┼──┤
|
1L 6s (onyx)
|
12, 3
|
4:1
|
├────────┼──┼──┼──┼──┼──┼──┼──┤
|
1L 7s (antipine)
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼──┼──┼──┼──┼──┤
|
1L 8s (antisubneutralic)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
10edo
|
3, 3
|
1:1
|
Generators 28\30 and 2\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────────────────────┼─┤
|
1L 1s
|
28, 2
|
14:1
|
├─────────────────────────┼─┼─┤
|
1L 2s
|
26, 2
|
13:1
|
├───────────────────────┼─┼─┼─┤
|
1L 3s
|
24, 2
|
12:1
|
├─────────────────────┼─┼─┼─┼─┤
|
1L 4s
|
22, 2
|
11:1
|
├───────────────────┼─┼─┼─┼─┼─┤
|
1L 5s (antimachinoid)
|
20, 2
|
10:1
|
├─────────────────┼─┼─┼─┼─┼─┼─┤
|
1L 6s (onyx)
|
18, 2
|
9:1
|
├───────────────┼─┼─┼─┼─┼─┼─┼─┤
|
1L 7s (antipine)
|
16, 2
|
8:1
|
├─────────────┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 8s (antisubneutralic)
|
14, 2
|
7:1
|
├───────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 9s (antisinatonic)
|
12, 2
|
6:1
|
├─────────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 10s
|
10, 2
|
5:1
|
├───────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 11s
|
8, 2
|
4:1
|
├─────┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 12s
|
6, 2
|
3:1
|
├───┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
1L 13s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 29\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────────────────────┼┤
|
1L 1s
|
29, 1
|
29:1
|
├───────────────────────────┼┼┤
|
1L 2s
|
28, 1
|
28:1
|
├──────────────────────────┼┼┼┤
|
1L 3s
|
27, 1
|
27:1
|
├─────────────────────────┼┼┼┼┤
|
1L 4s
|
26, 1
|
26:1
|
├────────────────────────┼┼┼┼┼┤
|
1L 5s (antimachinoid)
|
25, 1
|
25:1
|
├───────────────────────┼┼┼┼┼┼┤
|
1L 6s (onyx)
|
24, 1
|
24:1
|
├──────────────────────┼┼┼┼┼┼┼┤
|
1L 7s (antipine)
|
23, 1
|
23:1
|
├─────────────────────┼┼┼┼┼┼┼┼┤
|
1L 8s (antisubneutralic)
|
22, 1
|
22:1
|
├────────────────────┼┼┼┼┼┼┼┼┼┤
|
1L 9s (antisinatonic)
|
21, 1
|
21:1
|
├───────────────────┼┼┼┼┼┼┼┼┼┼┤
|
1L 10s
|
20, 1
|
20:1
|
├──────────────────┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 11s
|
19, 1
|
19:1
|
├─────────────────┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 12s
|
18, 1
|
18:1
|
├────────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 13s
|
17, 1
|
17:1
|
├───────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 14s
|
16, 1
|
16:1
|
├──────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 15s
|
15, 1
|
15:1
|
├─────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 16s
|
14, 1
|
14:1
|
├────────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 17s
|
13, 1
|
13:1
|
├───────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 18s
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 19s
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 20s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 21s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 22s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 23s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 24s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 25s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 26s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 27s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
1L 28s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Multi-period MOS scales
2 periods
Generators 8\30 and 7\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼──────┼───────┼──────┤
|
2L 2s
|
8, 7
|
8:7
|
├┼──────┼──────┼┼──────┼──────┤
|
4L 2s (citric)
|
7, 1
|
7:1
|
├┼┼─────┼┼─────┼┼┼─────┼┼─────┤
|
4L 6s (lime)
|
6, 1
|
6:1
|
├┼┼┼────┼┼┼────┼┼┼┼────┼┼┼────┤
|
4L 10s
|
5, 1
|
5:1
|
├┼┼┼┼───┼┼┼┼───┼┼┼┼┼───┼┼┼┼───┤
|
4L 14s
|
4, 1
|
4:1
|
├┼┼┼┼┼──┼┼┼┼┼──┼┼┼┼┼┼──┼┼┼┼┼──┤
|
4L 18s
|
3, 1
|
3:1
|
├┼┼┼┼┼┼─┼┼┼┼┼┼─┼┼┼┼┼┼┼─┼┼┼┼┼┼─┤
|
4L 22s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 9\30 and 6\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼─────┼────────┼─────┤
|
2L 2s
|
9, 6
|
3:2
|
├──┼─────┼─────┼──┼─────┼─────┤
|
4L 2s (citric)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
10edo
|
3, 3
|
1:1
|
Generators 10\30 and 5\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────┼────┼─────────┼────┤
|
2L 2s
|
10, 5
|
2:1
|
├────┼────┼────┼────┼────┼────┤
|
6edo
|
5, 5
|
1:1
|
Generators 11\30 and 4\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────────┼───┼──────────┼───┤
|
2L 2s
|
11, 4
|
11:4
|
├──────┼───┼───┼──────┼───┼───┤
|
2L 4s (malic)
|
7, 4
|
7:4
|
├──┼───┼───┼───┼──┼───┼───┼───┤
|
6L 2s (ekic)
|
4, 3
|
4:3
|
├──┼──┼┼──┼┼──┼┼──┼──┼┼──┼┼──┼┤
|
8L 6s
|
3, 1
|
3:1
|
├─┼┼─┼┼┼─┼┼┼─┼┼┼─┼┼─┼┼┼─┼┼┼─┼┼┤
|
8L 14s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 12\30 and 3\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────────┼──┼───────────┼──┤
|
2L 2s
|
12, 3
|
4:1
|
├────────┼──┼──┼────────┼──┼──┤
|
2L 4s (malic)
|
9, 3
|
3:1
|
├─────┼──┼──┼──┼─────┼──┼──┼──┤
|
2L 6s (subaric)
|
6, 3
|
2:1
|
├──┼──┼──┼──┼──┼──┼──┼──┼──┼──┤
|
10edo
|
3, 3
|
1:1
|
Generators 13\30 and 2\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────────┼─┼────────────┼─┤
|
2L 2s
|
13, 2
|
13:2
|
├──────────┼─┼─┼──────────┼─┼─┤
|
2L 4s (malic)
|
11, 2
|
11:2
|
├────────┼─┼─┼─┼────────┼─┼─┼─┤
|
2L 6s (subaric)
|
9, 2
|
9:2
|
├──────┼─┼─┼─┼─┼──────┼─┼─┼─┼─┤
|
2L 8s (jaric)
|
7, 2
|
7:2
|
├────┼─┼─┼─┼─┼─┼────┼─┼─┼─┼─┼─┤
|
2L 10s
|
5, 2
|
5:2
|
├──┼─┼─┼─┼─┼─┼─┼──┼─┼─┼─┼─┼─┼─┤
|
2L 12s
|
3, 2
|
3:2
|
├┼─┼─┼─┼─┼─┼─┼─┼┼─┼─┼─┼─┼─┼─┼─┤
|
14L 2s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 14\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────────────┼┼─────────────┼┤
|
2L 2s
|
14, 1
|
14:1
|
├────────────┼┼┼────────────┼┼┤
|
2L 4s (malic)
|
13, 1
|
13:1
|
├───────────┼┼┼┼───────────┼┼┼┤
|
2L 6s (subaric)
|
12, 1
|
12:1
|
├──────────┼┼┼┼┼──────────┼┼┼┼┤
|
2L 8s (jaric)
|
11, 1
|
11:1
|
├─────────┼┼┼┼┼┼─────────┼┼┼┼┼┤
|
2L 10s
|
10, 1
|
10:1
|
├────────┼┼┼┼┼┼┼────────┼┼┼┼┼┼┤
|
2L 12s
|
9, 1
|
9:1
|
├───────┼┼┼┼┼┼┼┼───────┼┼┼┼┼┼┼┤
|
2L 14s
|
8, 1
|
8:1
|
├──────┼┼┼┼┼┼┼┼┼──────┼┼┼┼┼┼┼┼┤
|
2L 16s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼┼┼┼┼┼─────┼┼┼┼┼┼┼┼┼┤
|
2L 18s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼┼┼┼┼┼────┼┼┼┼┼┼┼┼┼┼┤
|
2L 20s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼┼┼┼┼┼───┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 22s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 24s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
2L 26s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
3 periods
Generators 6\30 and 4\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─────┼───┼─────┼───┼─────┼───┤
|
3L 3s (triwood)
|
6, 4
|
3:2
|
├─┼───┼───┼─┼───┼───┼─┼───┼───┤
|
6L 3s (hyrulic)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 7\30 and 3\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──────┼──┼──────┼──┼──────┼──┤
|
3L 3s (triwood)
|
7, 3
|
7:3
|
├───┼──┼──┼───┼──┼──┼───┼──┼──┤
|
3L 6s (tcherepnin)
|
4, 3
|
4:3
|
├┼──┼──┼──┼┼──┼──┼──┼┼──┼──┼──┤
|
9L 3s
|
3, 1
|
3:1
|
├┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┼┼┼─┼┼─┼┼─┤
|
9L 12s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 8\30 and 2\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───────┼─┼───────┼─┼───────┼─┤
|
3L 3s (triwood)
|
8, 2
|
4:1
|
├─────┼─┼─┼─────┼─┼─┼─────┼─┼─┤
|
3L 6s (tcherepnin)
|
6, 2
|
3:1
|
├───┼─┼─┼─┼───┼─┼─┼─┼───┼─┼─┼─┤
|
3L 9s
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 9\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────────┼┼────────┼┼────────┼┤
|
3L 3s (triwood)
|
9, 1
|
9:1
|
├───────┼┼┼───────┼┼┼───────┼┼┤
|
3L 6s (tcherepnin)
|
8, 1
|
8:1
|
├──────┼┼┼┼──────┼┼┼┼──────┼┼┼┤
|
3L 9s
|
7, 1
|
7:1
|
├─────┼┼┼┼┼─────┼┼┼┼┼─────┼┼┼┼┤
|
3L 12s
|
6, 1
|
6:1
|
├────┼┼┼┼┼┼────┼┼┼┼┼┼────┼┼┼┼┼┤
|
3L 15s
|
5, 1
|
5:1
|
├───┼┼┼┼┼┼┼───┼┼┼┼┼┼┼───┼┼┼┼┼┼┤
|
3L 18s
|
4, 1
|
4:1
|
├──┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┼──┼┼┼┼┼┼┼┤
|
3L 21s
|
3, 1
|
3:1
|
├─┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┼─┼┼┼┼┼┼┼┼┤
|
3L 24s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
5 periods
Generators 4\30 and 2\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼─┼───┼─┼───┼─┼───┼─┼───┼─┤
|
5L 5s (pentawood)
|
4, 2
|
2:1
|
├─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┼─┤
|
15edo
|
2, 2
|
1:1
|
Generators 5\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├────┼┼────┼┼────┼┼────┼┼────┼┤
|
5L 5s (pentawood)
|
5, 1
|
5:1
|
├───┼┼┼───┼┼┼───┼┼┼───┼┼┼───┼┼┤
|
5L 10s
|
4, 1
|
4:1
|
├──┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┼──┼┼┼┤
|
5L 15s
|
3, 1
|
3:1
|
├─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┼─┼┼┼┼┤
|
5L 20s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
6 periods
Generators 3\30 and 2\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├──┼─┼──┼─┼──┼─┼──┼─┼──┼─┼──┼─┤
|
6L 6s
|
3, 2
|
3:2
|
├┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┼┼─┼─┤
|
12L 6s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
Generators 4\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├───┼┼───┼┼───┼┼───┼┼───┼┼───┼┤
|
6L 6s
|
4, 1
|
4:1
|
├──┼┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┼──┼┼┤
|
6L 12s
|
3, 1
|
3:1
|
├─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┼─┼┼┼┤
|
6L 18s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|
10 periods
Generators 2\30 and 1\30
Step visualization
|
MOS (name)
|
Step sizes
|
Step ratio
|
├─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┼─┼┤
|
10L 10s
|
2, 1
|
2:1
|
├┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┼┤
|
30edo
|
1, 1
|
1:1
|