1L 3s
Jump to navigation
Jump to search
Scale structure
Step pattern
Lsss
sssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
3\4 to 1\1 (900.0¢ to 1200.0¢)
Dark
0\1 to 1\4 (0.0¢ to 300.0¢)
Related MOS scales
Parent
1L 2s
Sister
3L 1s
Daughters
4L 1s, 1L 4s
Neutralized
2L 2s
2-Flought
5L 3s, 1L 7s
Equal tunings
Equalized (L:s = 1:1)
3\4 (900.0¢)
Supersoft (L:s = 4:3)
10\13 (923.1¢)
Soft (L:s = 3:2)
7\9 (933.3¢)
Semisoft (L:s = 5:3)
11\14 (942.9¢)
Basic (L:s = 2:1)
4\5 (960.0¢)
Semihard (L:s = 5:2)
9\11 (981.8¢)
Hard (L:s = 3:1)
5\6 (1000.0¢)
Superhard (L:s = 4:1)
6\7 (1028.6¢)
Collapsed (L:s = 1:0)
1\1 (1200.0¢)
↑ 1L 2s | 2L 2s ↗ | |
1L 3s | 2L 3s → | |
↓ 1L 4s | 2L 4s ↘ |
┌╥┬┬┬┐ │║││││ ││││││ └┴┴┴┴┘
sssL
1L 3s, also called antetric, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 3 small steps, repeating every octave. Generators that produce this scale range from 900¢ to 1200¢, or from 0¢ to 300¢.
In South Africa, the San use a tetratonic scale which can be approximated by basic 1L 3s.[1]
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||
---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | |||
3|0 | 1 | Lsss | Perf. | Aug. | Maj. | Perf. | Perf. |
2|1 | 4 | sLss | Perf. | Perf. | Maj. | Perf. | Perf. |
1|2 | 3 | ssLs | Perf. | Perf. | Min. | Perf. | Perf. |
0|3 | 2 | sssL | Perf. | Perf. | Min. | Dim. | Perf. |
Scale tree
Generator ranges:
- Chroma-positive generator: 900 cents (3\4) to 1200 cents (1\1)
- Chroma-negative generator: 0 cents (0\1) to 300 cents (1\4)
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
3\4 | 900.000 | 300.000 | 1:1 | 1.000 | Equalized 1L 3s | |||||
16\21 | 914.286 | 285.714 | 6:5 | 1.200 | ||||||
13\17 | 917.647 | 282.353 | 5:4 | 1.250 | ||||||
23\30 | 920.000 | 280.000 | 9:7 | 1.286 | ||||||
10\13 | 923.077 | 276.923 | 4:3 | 1.333 | Supersoft 1L 3s | |||||
27\35 | 925.714 | 274.286 | 11:8 | 1.375 | ||||||
17\22 | 927.273 | 272.727 | 7:5 | 1.400 | ||||||
24\31 | 929.032 | 270.968 | 10:7 | 1.429 | Orson/Orwell | |||||
7\9 | 933.333 | 266.667 | 3:2 | 1.500 | Soft 1L 3s | |||||
25\32 | 937.500 | 262.500 | 11:7 | 1.571 | ||||||
18\23 | 939.130 | 260.870 | 8:5 | 1.600 | ||||||
29\37 | 940.541 | 259.459 | 13:8 | 1.625 | ||||||
11\14 | 942.857 | 257.143 | 5:3 | 1.667 | Semisoft 1L 3s | |||||
26\33 | 945.455 | 254.545 | 12:7 | 1.714 | ||||||
15\19 | 947.368 | 252.632 | 7:4 | 1.750 | ||||||
19\24 | 950.000 | 250.000 | 9:5 | 1.800 | Godzilla | |||||
4\5 | 960.000 | 240.000 | 2:1 | 2.000 | Basic 1L 3s Scales with tunings softer than this are proper | |||||
17\21 | 971.429 | 228.571 | 9:4 | 2.250 | Laconic/gorgo | |||||
13\16 | 975.000 | 225.000 | 7:3 | 2.333 | ||||||
22\27 | 977.778 | 222.222 | 12:5 | 2.400 | ||||||
9\11 | 981.818 | 218.182 | 5:2 | 2.500 | Semihard 1L 3s | |||||
23\28 | 985.714 | 214.286 | 13:5 | 2.600 | Unnamed golden tuning (213.5979¢ | |||||
14\17 | 988.235 | 211.765 | 8:3 | 2.667 | ||||||
19\23 | 991.304 | 208.696 | 11:4 | 2.750 | ||||||
5\6 | 1000.000 | 200.000 | 3:1 | 3.000 | Hard 1L 3s | |||||
16\19 | 1010.526 | 189.474 | 10:3 | 3.333 | Isra/deutone | |||||
11\13 | 1015.385 | 184.615 | 7:2 | 3.500 | ||||||
17\20 | 1020.000 | 180.000 | 11:3 | 3.667 | ||||||
6\7 | 1028.571 | 171.429 | 4:1 | 4.000 | Superhard 1L 3s | |||||
13\15 | 1040.000 | 160.000 | 9:2 | 4.500 | Porcupine | |||||
7\8 | 1050.000 | 150.000 | 5:1 | 5.000 | ||||||
8\9 | 1066.667 | 133.333 | 6:1 | 6.000 | ||||||
1\1 | 1200.000 | 0.000 | 1:0 | → ∞ | Collapsed 1L 3s |
Sources
- ↑ Wikipedia contributors. (2022, November 21). Tetratonic scale. In Wikipedia, The Free Encyclopedia. Retrieved 09:40, August 13, 2024, from https://en.wikipedia.org/w/index.php?title=Tetratonic_scale&oldid=1123114247