1L 1s

From Xenharmonic Wiki
Jump to navigation Jump to search
1L 1s 2L 1s →
↓ 1L 2s 2L 2s ↘
┌╥┬┐
│║││
││││
└┴┴┘
Scale structure
Step pattern Ls
sL
Equave 2/1 (1200.0 ¢)
Period 2/1 (1200.0 ¢)
Generator size
Bright 1\2 to 1\1 (600.0 ¢ to 1200.0 ¢)
Dark 0\1 to 1\2 (0.0 ¢ to 600.0 ¢)
TAMNAMS information
Name monowood
Prefix monwd-
Abbrev. w
Related MOS scales
Parent none
Sister 1L 1s (self)
Daughters 2L 1s, 1L 2s
Neutralized 2edo
2-Flought 3L 1s, 1L 3s
Equal tunings
Equalized (L:s = 1:1) 1\2 (600.0 ¢)
Supersoft (L:s = 4:3) 4\7 (685.7 ¢)
Soft (L:s = 3:2) 3\5 (720.0 ¢)
Semisoft (L:s = 5:3) 5\8 (750.0 ¢)
Basic (L:s = 2:1) 2\3 (800.0 ¢)
Semihard (L:s = 5:2) 5\7 (857.1 ¢)
Hard (L:s = 3:1) 3\4 (900.0 ¢)
Superhard (L:s = 4:1) 4\5 (960.0 ¢)
Collapsed (L:s = 1:0) 1\1 (1200.0 ¢)

1L 1s, named monowood in TAMNAMS, is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 1 large step and 1 small step, repeating every octave. Generators that produce this scale range from 600 ¢ to 1200 ¢, or from 0 ¢ to 600 ¢. Scales of this form are always proper because there is only one small step. It is the simplest valid MOS pattern, often referred to as the trivial MOS scale.

Names

TAMNAMS uses the name "monowood" for this MOS scale, in reference to the other n-wood names (such as biwood, triwood, and tetrawood), named after blackwood and whitewood) and specifically refers to this mos with an octave period.

The name "trivial" refers to how this is a trivial MOS pattern, though the name is meant to be equave-agnostic.

Modes

Scale degrees of the modes of 1L 1s
UDP Cyclic
order
Step
pattern
Scale degree (monwddegree)
0 1 2
1|0 1 Ls Perf. Maj. Perf.
0|1 2 sL Perf. Min. Perf.

Intervals

Intervals of 1L 1s
Intervals Steps
subtended
Range in cents
Generic Specific Abbrev.
0-monwdstep Perfect 0-monwdstep P0ws 0 0.0 ¢
1-monwdstep Minor 1-monwdstep m1ws s 0.0 ¢ to 600.0 ¢
Major 1-monwdstep M1ws L 600.0 ¢ to 1200.0 ¢
2-monwdstep Perfect 2-monwdstep P2ws L + s 1200.0 ¢

Properties

All single-period mosses ultimately start with a generating interval and, for octave-equivalent scales, the generator's octave complement. Hence, this scale can also be seen as the parent of every strict moment-of-symmetry scale and is thus found as the root of various scale trees, such as the mos family tree.

This mos is also its own sister, though this property is also true of all nL ns scales.

Stacking a generating interval, or one of its two sizes of mossteps, just once produces this mos's daughter mosses of 2L 1s and 1L 2s.

Scale tree

As the mos 1L 1s is related to all single-period mosses, the scale tree depicted shows the ranges of related mosses, rather than temperaments.

Scale tree and tuning spectrum of 1L 1s
Generator(edo) Cents Step ratio Comments(always proper)
Bright Dark L:s Hardness
1\2 600.000 600.000 1:1 1.000 Equalized 1L 1s
6\11 654.545 545.455 6:5 1.200
5\9 666.667 533.333 5:4 1.250 2L 5s range (includes 2L 7s and 7L 2s)
9\16 675.000 525.000 9:7 1.286
4\7 685.714 514.286 4:3 1.333 Supersoft 1L 1s
11\19 694.737 505.263 11:8 1.375
7\12 700.000 500.000 7:5 1.400 5L 2s range (includes 7L 5s and 5L 7s)
10\17 705.882 494.118 10:7 1.429
3\5 720.000 480.000 3:2 1.500 Soft 1L 1s
11\18 733.333 466.667 11:7 1.571
8\13 738.462 461.538 8:5 1.600 5L 3s range
13\21 742.857 457.143 13:8 1.625
5\8 750.000 450.000 5:3 1.667 Semisoft 1L 1s
12\19 757.895 442.105 12:7 1.714
7\11 763.636 436.364 7:4 1.750 3L 5s range
9\14 771.429 428.571 9:5 1.800
2\3 800.000 400.000 2:1 2.000 Basic 1L 1s
9\13 830.769 369.231 9:4 2.250
7\10 840.000 360.000 7:3 2.333 3L 4s range (includes 3L 7s and 7L 3s)
12\17 847.059 352.941 12:5 2.400
5\7 857.143 342.857 5:2 2.500 Semihard 1L 1s
13\18 866.667 333.333 13:5 2.600
8\11 872.727 327.273 8:3 2.667 4L 3s range (includes 7L 4s and 4L 7s)
11\15 880.000 320.000 11:4 2.750
3\4 900.000 300.000 3:1 3.000 Hard 1L 1s
10\13 923.077 276.923 10:3 3.333
7\9 933.333 266.667 7:2 3.500 4L 1s range (includes 4L 5s and 5L 4s)
11\14 942.857 257.143 11:3 3.667
4\5 960.000 240.000 4:1 4.000 Superhard 1L 1s
9\11 981.818 218.182 9:2 4.500
5\6 1000.000 200.000 5:1 5.000 1L 4s range (includes 5L 1s and 1L 5s)
6\7 1028.571 171.429 6:1 6.000
1\1 1200.000 0.000 1:0 → ∞ Collapsed 1L 1s