2L 20s
↖ 1L 19s | ↑ 2L 19s | 3L 19s ↗ |
← 1L 20s | 2L 20s | 3L 20s → |
↙ 1L 21s | ↓ 2L 21s | 3L 21s ↘ |
┌╥┬┬┬┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┬┬┬┐ │║││││││││││║│││││││││││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
ssssssssssLssssssssssL
2L 20s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 2 large steps and 20 small steps, with a period of 1 large step and 10 small steps that repeats every 600.0 ¢, or twice every octave. 2L 20s is related to 2L 8s, expanding it by 12 tones. Generators that produce this scale range from 545.5 ¢ to 600 ¢, or from 0 ¢ to 54.5 ¢.
This scale is the quarter tone scale of Shrutar.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for diatonic interval categories.
Intervals
The intervals of 2L 20s are named after the number of mossteps (L and s) they subtend. Each interval, apart from the period intervals (perfect 0-mosstep, perfect 11-mosstep, and perfect 22-mosstep), has two varieties, or sizes, each. Interval varieties are named major and minor for the large and small sizes, respectively, and augmented, perfect, and diminished for the scale's generators.
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0 ¢ to 54.5 ¢ |
Augmented 1-mosstep | A1ms | L | 54.5 ¢ to 600.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 109.1 ¢ |
Major 2-mosstep | M2ms | L + s | 109.1 ¢ to 600.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0 ¢ to 163.6 ¢ |
Major 3-mosstep | M3ms | L + 2s | 163.6 ¢ to 600.0 ¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0 ¢ to 218.2 ¢ |
Major 4-mosstep | M4ms | L + 3s | 218.2 ¢ to 600.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0 ¢ to 272.7 ¢ |
Major 5-mosstep | M5ms | L + 4s | 272.7 ¢ to 600.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0 ¢ to 327.3 ¢ |
Major 6-mosstep | M6ms | L + 5s | 327.3 ¢ to 600.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | 7s | 0.0 ¢ to 381.8 ¢ |
Major 7-mosstep | M7ms | L + 6s | 381.8 ¢ to 600.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 8s | 0.0 ¢ to 436.4 ¢ |
Major 8-mosstep | M8ms | L + 7s | 436.4 ¢ to 600.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 9s | 0.0 ¢ to 490.9 ¢ |
Major 9-mosstep | M9ms | L + 8s | 490.9 ¢ to 600.0 ¢ | |
10-mosstep | Diminished 10-mosstep | d10ms | 10s | 0.0 ¢ to 545.5 ¢ |
Perfect 10-mosstep | P10ms | L + 9s | 545.5 ¢ to 600.0 ¢ | |
11-mosstep | Perfect 11-mosstep | P11ms | L + 10s | 600.0 ¢ |
12-mosstep | Perfect 12-mosstep | P12ms | L + 11s | 600.0 ¢ to 654.5 ¢ |
Augmented 12-mosstep | A12ms | 2L + 10s | 654.5 ¢ to 1200.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 600.0 ¢ to 709.1 ¢ |
Major 13-mosstep | M13ms | 2L + 11s | 709.1 ¢ to 1200.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 600.0 ¢ to 763.6 ¢ |
Major 14-mosstep | M14ms | 2L + 12s | 763.6 ¢ to 1200.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | L + 14s | 600.0 ¢ to 818.2 ¢ |
Major 15-mosstep | M15ms | 2L + 13s | 818.2 ¢ to 1200.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | L + 15s | 600.0 ¢ to 872.7 ¢ |
Major 16-mosstep | M16ms | 2L + 14s | 872.7 ¢ to 1200.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | L + 16s | 600.0 ¢ to 927.3 ¢ |
Major 17-mosstep | M17ms | 2L + 15s | 927.3 ¢ to 1200.0 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | L + 17s | 600.0 ¢ to 981.8 ¢ |
Major 18-mosstep | M18ms | 2L + 16s | 981.8 ¢ to 1200.0 ¢ | |
19-mosstep | Minor 19-mosstep | m19ms | L + 18s | 600.0 ¢ to 1036.4 ¢ |
Major 19-mosstep | M19ms | 2L + 17s | 1036.4 ¢ to 1200.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | L + 19s | 600.0 ¢ to 1090.9 ¢ |
Major 20-mosstep | M20ms | 2L + 18s | 1090.9 ¢ to 1200.0 ¢ | |
21-mosstep | Diminished 21-mosstep | d21ms | L + 20s | 600.0 ¢ to 1145.5 ¢ |
Perfect 21-mosstep | P21ms | 2L + 19s | 1145.5 ¢ to 1200.0 ¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 2L + 20s | 1200.0 ¢ |
Generator chain
A chain of bright generators, each a perfect 10-mosstep, produces the following scale degrees. A chain of 11 bright generators from each period contains the scale degrees of one of the modes of 2L 20s. Expanding each chain to 12 scale degrees produces the modes of either 22L 2s (for soft-of-basic tunings) or 2L 22s (for hard-of-basic tunings).
Bright gens | Scale degree | Abbrev. | Scale degree | Abbrev. |
---|---|---|---|---|
11 | Augmented 0-mosdegree | A0md | Augmented 11-mosdegree | A11md |
10 | Augmented 1-mosdegree | A1md | Augmented 12-mosdegree | A12md |
9 | Major 2-mosdegree | M2md | Major 13-mosdegree | M13md |
8 | Major 3-mosdegree | M3md | Major 14-mosdegree | M14md |
7 | Major 4-mosdegree | M4md | Major 15-mosdegree | M15md |
6 | Major 5-mosdegree | M5md | Major 16-mosdegree | M16md |
5 | Major 6-mosdegree | M6md | Major 17-mosdegree | M17md |
4 | Major 7-mosdegree | M7md | Major 18-mosdegree | M18md |
3 | Major 8-mosdegree | M8md | Major 19-mosdegree | M19md |
2 | Major 9-mosdegree | M9md | Major 20-mosdegree | M20md |
1 | Perfect 10-mosdegree | P10md | Perfect 21-mosdegree | P21md |
0 | Perfect 0-mosdegree Perfect 11-mosdegree |
P0md P11md |
Perfect 11-mosdegree Perfect 22-mosdegree |
P11md P22md |
−1 | Perfect 1-mosdegree | P1md | Perfect 12-mosdegree | P12md |
−2 | Minor 2-mosdegree | m2md | Minor 13-mosdegree | m13md |
−3 | Minor 3-mosdegree | m3md | Minor 14-mosdegree | m14md |
−4 | Minor 4-mosdegree | m4md | Minor 15-mosdegree | m15md |
−5 | Minor 5-mosdegree | m5md | Minor 16-mosdegree | m16md |
−6 | Minor 6-mosdegree | m6md | Minor 17-mosdegree | m17md |
−7 | Minor 7-mosdegree | m7md | Minor 18-mosdegree | m18md |
−8 | Minor 8-mosdegree | m8md | Minor 19-mosdegree | m19md |
−9 | Minor 9-mosdegree | m9md | Minor 20-mosdegree | m20md |
−10 | Diminished 10-mosdegree | d10md | Diminished 21-mosdegree | d21md |
−11 | Diminished 11-mosdegree | d11md | Diminished 22-mosdegree | d22md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | ||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | |||
20|0(2) | 1 | LssssssssssLssssssssss | Perf. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
18|2(2) | 11 | sLssssssssssLsssssssss | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
16|4(2) | 10 | ssLssssssssssLssssssss | Perf. | Perf. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
14|6(2) | 9 | sssLssssssssssLsssssss | Perf. | Perf. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
12|8(2) | 8 | ssssLssssssssssLssssss | Perf. | Perf. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
10|10(2) | 7 | sssssLssssssssssLsssss | Perf. | Perf. | Min. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Maj. | Perf. | Perf. |
8|12(2) | 6 | ssssssLssssssssssLssss | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Maj. | Maj. | Maj. | Perf. | Perf. |
6|14(2) | 5 | sssssssLssssssssssLsss | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Maj. | Perf. | Perf. |
4|16(2) | 4 | ssssssssLssssssssssLss | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Perf. | Perf. |
2|18(2) | 3 | sssssssssLssssssssssLs | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Perf. |
0|20(2) | 2 | ssssssssssLssssssssssL | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Perf. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
10\22 | 545.455 | 54.545 | 1:1 | 1.000 | Equalized 2L 20s | |||||
51\112 | 546.429 | 53.571 | 6:5 | 1.200 | ||||||
41\90 | 546.667 | 53.333 | 5:4 | 1.250 | ||||||
72\158 | 546.835 | 53.165 | 9:7 | 1.286 | ||||||
31\68 | 547.059 | 52.941 | 4:3 | 1.333 | Supersoft 2L 20s | |||||
83\182 | 547.253 | 52.747 | 11:8 | 1.375 | ||||||
52\114 | 547.368 | 52.632 | 7:5 | 1.400 | ||||||
73\160 | 547.500 | 52.500 | 10:7 | 1.429 | ||||||
21\46 | 547.826 | 52.174 | 3:2 | 1.500 | Soft 2L 20s | |||||
74\162 | 548.148 | 51.852 | 11:7 | 1.571 | ||||||
53\116 | 548.276 | 51.724 | 8:5 | 1.600 | ||||||
85\186 | 548.387 | 51.613 | 13:8 | 1.625 | ||||||
32\70 | 548.571 | 51.429 | 5:3 | 1.667 | Semisoft 2L 20s | |||||
75\164 | 548.780 | 51.220 | 12:7 | 1.714 | ||||||
43\94 | 548.936 | 51.064 | 7:4 | 1.750 | ||||||
54\118 | 549.153 | 50.847 | 9:5 | 1.800 | ||||||
11\24 | 550.000 | 50.000 | 2:1 | 2.000 | Basic 2L 20s Scales with tunings softer than this are proper | |||||
45\98 | 551.020 | 48.980 | 9:4 | 2.250 | ||||||
34\74 | 551.351 | 48.649 | 7:3 | 2.333 | ||||||
57\124 | 551.613 | 48.387 | 12:5 | 2.400 | ||||||
23\50 | 552.000 | 48.000 | 5:2 | 2.500 | Semihard 2L 20s | |||||
58\126 | 552.381 | 47.619 | 13:5 | 2.600 | ||||||
35\76 | 552.632 | 47.368 | 8:3 | 2.667 | ||||||
47\102 | 552.941 | 47.059 | 11:4 | 2.750 | ||||||
12\26 | 553.846 | 46.154 | 3:1 | 3.000 | Hard 2L 20s | |||||
37\80 | 555.000 | 45.000 | 10:3 | 3.333 | ||||||
25\54 | 555.556 | 44.444 | 7:2 | 3.500 | ||||||
38\82 | 556.098 | 43.902 | 11:3 | 3.667 | ||||||
13\28 | 557.143 | 42.857 | 4:1 | 4.000 | Superhard 2L 20s | |||||
27\58 | 558.621 | 41.379 | 9:2 | 4.500 | ||||||
14\30 | 560.000 | 40.000 | 5:1 | 5.000 | ||||||
15\32 | 562.500 | 37.500 | 6:1 | 6.000 | ||||||
1\2 | 600.000 | 0.000 | 1:0 | → ∞ | Collapsed 2L 20s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |