3L 19s
Jump to navigation
Jump to search
Scale structure
Step pattern
LssssssLssssssLsssssss
sssssssLssssssLssssssL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
7\22 to 1\3 (381.8¢ to 400.0¢)
Dark
2\3 to 15\22 (800.0¢ to 818.2¢)
TAMNAMS information
Descends from
3L 7s
Ancestor's step ratio range
5:1 to 1:0
Related MOS scales
Parent
3L 16s
Sister
19L 3s
Daughters
22L 3s, 3L 22s
Neutralized
6L 16s
2-Flought
25L 19s, 3L 41s
Equal tunings
Equalized (L:s = 1:1)
7\22 (381.8¢)
Supersoft (L:s = 4:3)
22\69 (382.6¢)
Soft (L:s = 3:2)
15\47 (383.0¢)
Semisoft (L:s = 5:3)
23\72 (383.3¢)
Basic (L:s = 2:1)
8\25 (384.0¢)
Semihard (L:s = 5:2)
17\53 (384.9¢)
Hard (L:s = 3:1)
9\28 (385.7¢)
Superhard (L:s = 4:1)
10\31 (387.1¢)
Collapsed (L:s = 1:0)
1\3 (400.0¢)
↖ 2L 18s | ↑ 3L 18s | 4L 18s ↗ |
← 2L 19s | 3L 19s | 4L 19s → |
↙ 2L 20s | ↓ 3L 20s | 4L 20s ↘ |
┌╥┬┬┬┬┬┬╥┬┬┬┬┬┬╥┬┬┬┬┬┬┬┐ │║││││││║││││││║││││││││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssssssLssssssLssssssL
3L 19s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 19 small steps, repeating every octave. 3L 19s is related to 3L 7s, expanding it by 12 tones. Generators that produce this scale range from 381.8¢ to 400¢, or from 800¢ to 818.2¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
21|0 | 1 | LssssssLssssssLsssssss |
20|1 | 8 | LssssssLsssssssLssssss |
19|2 | 15 | LsssssssLssssssLssssss |
18|3 | 22 | sLssssssLssssssLssssss |
17|4 | 7 | sLssssssLsssssssLsssss |
16|5 | 14 | sLsssssssLssssssLsssss |
15|6 | 21 | ssLssssssLssssssLsssss |
14|7 | 6 | ssLssssssLsssssssLssss |
13|8 | 13 | ssLsssssssLssssssLssss |
12|9 | 20 | sssLssssssLssssssLssss |
11|10 | 5 | sssLssssssLsssssssLsss |
10|11 | 12 | sssLsssssssLssssssLsss |
9|12 | 19 | ssssLssssssLssssssLsss |
8|13 | 4 | ssssLssssssLsssssssLss |
7|14 | 11 | ssssLsssssssLssssssLss |
6|15 | 18 | sssssLssssssLssssssLss |
5|16 | 3 | sssssLssssssLsssssssLs |
4|17 | 10 | sssssLsssssssLssssssLs |
3|18 | 17 | ssssssLssssssLssssssLs |
2|19 | 2 | ssssssLssssssLsssssssL |
1|20 | 9 | ssssssLsssssssLssssssL |
0|21 | 16 | sssssssLssssssLssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 54.5¢ |
Major 1-mosstep | M1ms | L | 54.5¢ to 400.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 109.1¢ |
Major 2-mosstep | M2ms | L + s | 109.1¢ to 400.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 163.6¢ |
Major 3-mosstep | M3ms | L + 2s | 163.6¢ to 400.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 218.2¢ |
Major 4-mosstep | M4ms | L + 3s | 218.2¢ to 400.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0¢ to 272.7¢ |
Major 5-mosstep | M5ms | L + 4s | 272.7¢ to 400.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0¢ to 327.3¢ |
Major 6-mosstep | M6ms | L + 5s | 327.3¢ to 400.0¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 7s | 0.0¢ to 381.8¢ |
Perfect 7-mosstep | P7ms | L + 6s | 381.8¢ to 400.0¢ | |
8-mosstep | Minor 8-mosstep | m8ms | L + 7s | 400.0¢ to 436.4¢ |
Major 8-mosstep | M8ms | 2L + 6s | 436.4¢ to 800.0¢ | |
9-mosstep | Minor 9-mosstep | m9ms | L + 8s | 400.0¢ to 490.9¢ |
Major 9-mosstep | M9ms | 2L + 7s | 490.9¢ to 800.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | L + 9s | 400.0¢ to 545.5¢ |
Major 10-mosstep | M10ms | 2L + 8s | 545.5¢ to 800.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | L + 10s | 400.0¢ to 600.0¢ |
Major 11-mosstep | M11ms | 2L + 9s | 600.0¢ to 800.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | L + 11s | 400.0¢ to 654.5¢ |
Major 12-mosstep | M12ms | 2L + 10s | 654.5¢ to 800.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 400.0¢ to 709.1¢ |
Major 13-mosstep | M13ms | 2L + 11s | 709.1¢ to 800.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 400.0¢ to 763.6¢ |
Major 14-mosstep | M14ms | 2L + 12s | 763.6¢ to 800.0¢ | |
15-mosstep | Perfect 15-mosstep | P15ms | 2L + 13s | 800.0¢ to 818.2¢ |
Augmented 15-mosstep | A15ms | 3L + 12s | 818.2¢ to 1200.0¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 2L + 14s | 800.0¢ to 872.7¢ |
Major 16-mosstep | M16ms | 3L + 13s | 872.7¢ to 1200.0¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 2L + 15s | 800.0¢ to 927.3¢ |
Major 17-mosstep | M17ms | 3L + 14s | 927.3¢ to 1200.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 2L + 16s | 800.0¢ to 981.8¢ |
Major 18-mosstep | M18ms | 3L + 15s | 981.8¢ to 1200.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 2L + 17s | 800.0¢ to 1036.4¢ |
Major 19-mosstep | M19ms | 3L + 16s | 1036.4¢ to 1200.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 2L + 18s | 800.0¢ to 1090.9¢ |
Major 20-mosstep | M20ms | 3L + 17s | 1090.9¢ to 1200.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 2L + 19s | 800.0¢ to 1145.5¢ |
Major 21-mosstep | M21ms | 3L + 18s | 1145.5¢ to 1200.0¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 3L + 19s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\22 | 381.818 | 818.182 | 1:1 | 1.000 | Equalized 3L 19s | |||||
36\113 | 382.301 | 817.699 | 6:5 | 1.200 | ||||||
29\91 | 382.418 | 817.582 | 5:4 | 1.250 | ||||||
51\160 | 382.500 | 817.500 | 9:7 | 1.286 | ||||||
22\69 | 382.609 | 817.391 | 4:3 | 1.333 | Supersoft 3L 19s | |||||
59\185 | 382.703 | 817.297 | 11:8 | 1.375 | ||||||
37\116 | 382.759 | 817.241 | 7:5 | 1.400 | ||||||
52\163 | 382.822 | 817.178 | 10:7 | 1.429 | ||||||
15\47 | 382.979 | 817.021 | 3:2 | 1.500 | Soft 3L 19s | |||||
53\166 | 383.133 | 816.867 | 11:7 | 1.571 | ||||||
38\119 | 383.193 | 816.807 | 8:5 | 1.600 | ||||||
61\191 | 383.246 | 816.754 | 13:8 | 1.625 | ||||||
23\72 | 383.333 | 816.667 | 5:3 | 1.667 | Semisoft 3L 19s | |||||
54\169 | 383.432 | 816.568 | 12:7 | 1.714 | ||||||
31\97 | 383.505 | 816.495 | 7:4 | 1.750 | ||||||
39\122 | 383.607 | 816.393 | 9:5 | 1.800 | ||||||
8\25 | 384.000 | 816.000 | 2:1 | 2.000 | Basic 3L 19s Scales with tunings softer than this are proper | |||||
33\103 | 384.466 | 815.534 | 9:4 | 2.250 | ||||||
25\78 | 384.615 | 815.385 | 7:3 | 2.333 | ||||||
42\131 | 384.733 | 815.267 | 12:5 | 2.400 | ||||||
17\53 | 384.906 | 815.094 | 5:2 | 2.500 | Semihard 3L 19s | |||||
43\134 | 385.075 | 814.925 | 13:5 | 2.600 | ||||||
26\81 | 385.185 | 814.815 | 8:3 | 2.667 | ||||||
35\109 | 385.321 | 814.679 | 11:4 | 2.750 | ||||||
9\28 | 385.714 | 814.286 | 3:1 | 3.000 | Hard 3L 19s | |||||
28\87 | 386.207 | 813.793 | 10:3 | 3.333 | ||||||
19\59 | 386.441 | 813.559 | 7:2 | 3.500 | ||||||
29\90 | 386.667 | 813.333 | 11:3 | 3.667 | ||||||
10\31 | 387.097 | 812.903 | 4:1 | 4.000 | Superhard 3L 19s | |||||
21\65 | 387.692 | 812.308 | 9:2 | 4.500 | ||||||
11\34 | 388.235 | 811.765 | 5:1 | 5.000 | ||||||
12\37 | 389.189 | 810.811 | 6:1 | 6.000 | ||||||
1\3 | 400.000 | 800.000 | 1:0 | → ∞ | Collapsed 3L 19s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |