19L 3s
Jump to navigation
Jump to search
Scale structure
Step pattern
LLLLLLLsLLLLLLsLLLLLLs
sLLLLLLsLLLLLLsLLLLLLL
Equave
2/1 (1200.0¢)
Period
2/1 (1200.0¢)
Generator size
Bright
15\22 to 13\19 (818.2¢ to 821.1¢)
Dark
6\19 to 7\22 (378.9¢ to 381.8¢)
TAMNAMS information
Descends from
3L 7s (sephiroid)
Ancestor's step ratio range
4:1 to 5:1
Related MOS scales
Parent
3L 16s
Sister
3L 19s
Daughters
22L 19s, 19L 22s
Neutralized
16L 6s
2-Flought
41L 3s, 19L 25s
Equal tunings
Equalized (L:s = 1:1)
15\22 (818.2¢)
Supersoft (L:s = 4:3)
58\85 (818.8¢)
Soft (L:s = 3:2)
43\63 (819.0¢)
Semisoft (L:s = 5:3)
71\104 (819.2¢)
Basic (L:s = 2:1)
28\41 (819.5¢)
Semihard (L:s = 5:2)
69\101 (819.8¢)
Hard (L:s = 3:1)
41\60 (820.0¢)
Superhard (L:s = 4:1)
54\79 (820.3¢)
Collapsed (L:s = 1:0)
13\19 (821.1¢)
↖ 18L 2s | ↑ 19L 2s | 20L 2s ↗ |
← 18L 3s | 19L 3s | 20L 3s → |
↙ 18L 4s | ↓ 19L 4s | 20L 4s ↘ |
┌╥╥╥╥╥╥╥┬╥╥╥╥╥╥┬╥╥╥╥╥╥┬┐ │║║║║║║║│║║║║║║│║║║║║║││ ││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sLLLLLLsLLLLLLsLLLLLLL
19L 3s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 19 large steps and 3 small steps, repeating every octave. 19L 3s is related to 3L 7s, expanding it by 12 tones. Generators that produce this scale range from 818.2¢ to 821.1¢, or from 378.9¢ to 381.8¢.
It is notable for supporting Magic temperament.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
21|0 | 1 | LLLLLLLsLLLLLLsLLLLLLs |
20|1 | 16 | LLLLLLsLLLLLLLsLLLLLLs |
19|2 | 9 | LLLLLLsLLLLLLsLLLLLLLs |
18|3 | 2 | LLLLLLsLLLLLLsLLLLLLsL |
17|4 | 17 | LLLLLsLLLLLLLsLLLLLLsL |
16|5 | 10 | LLLLLsLLLLLLsLLLLLLLsL |
15|6 | 3 | LLLLLsLLLLLLsLLLLLLsLL |
14|7 | 18 | LLLLsLLLLLLLsLLLLLLsLL |
13|8 | 11 | LLLLsLLLLLLsLLLLLLLsLL |
12|9 | 4 | LLLLsLLLLLLsLLLLLLsLLL |
11|10 | 19 | LLLsLLLLLLLsLLLLLLsLLL |
10|11 | 12 | LLLsLLLLLLsLLLLLLLsLLL |
9|12 | 5 | LLLsLLLLLLsLLLLLLsLLLL |
8|13 | 20 | LLsLLLLLLLsLLLLLLsLLLL |
7|14 | 13 | LLsLLLLLLsLLLLLLLsLLLL |
6|15 | 6 | LLsLLLLLLsLLLLLLsLLLLL |
5|16 | 21 | LsLLLLLLLsLLLLLLsLLLLL |
4|17 | 14 | LsLLLLLLsLLLLLLLsLLLLL |
3|18 | 7 | LsLLLLLLsLLLLLLsLLLLLL |
2|19 | 22 | sLLLLLLLsLLLLLLsLLLLLL |
1|20 | 15 | sLLLLLLsLLLLLLLsLLLLLL |
0|21 | 8 | sLLLLLLsLLLLLLsLLLLLLL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0¢ to 54.5¢ |
Major 1-mosstep | M1ms | L | 54.5¢ to 63.2¢ | |
2-mosstep | Minor 2-mosstep | m2ms | L + s | 63.2¢ to 109.1¢ |
Major 2-mosstep | M2ms | 2L | 109.1¢ to 126.3¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 2L + s | 126.3¢ to 163.6¢ |
Major 3-mosstep | M3ms | 3L | 163.6¢ to 189.5¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 3L + s | 189.5¢ to 218.2¢ |
Major 4-mosstep | M4ms | 4L | 218.2¢ to 252.6¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 4L + s | 252.6¢ to 272.7¢ |
Major 5-mosstep | M5ms | 5L | 272.7¢ to 315.8¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 5L + s | 315.8¢ to 327.3¢ |
Major 6-mosstep | M6ms | 6L | 327.3¢ to 378.9¢ | |
7-mosstep | Perfect 7-mosstep | P7ms | 6L + s | 378.9¢ to 381.8¢ |
Augmented 7-mosstep | A7ms | 7L | 381.8¢ to 442.1¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 6L + 2s | 378.9¢ to 436.4¢ |
Major 8-mosstep | M8ms | 7L + s | 436.4¢ to 442.1¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 7L + 2s | 442.1¢ to 490.9¢ |
Major 9-mosstep | M9ms | 8L + s | 490.9¢ to 505.3¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 8L + 2s | 505.3¢ to 545.5¢ |
Major 10-mosstep | M10ms | 9L + s | 545.5¢ to 568.4¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 9L + 2s | 568.4¢ to 600.0¢ |
Major 11-mosstep | M11ms | 10L + s | 600.0¢ to 631.6¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 10L + 2s | 631.6¢ to 654.5¢ |
Major 12-mosstep | M12ms | 11L + s | 654.5¢ to 694.7¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 11L + 2s | 694.7¢ to 709.1¢ |
Major 13-mosstep | M13ms | 12L + s | 709.1¢ to 757.9¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 12L + 2s | 757.9¢ to 763.6¢ |
Major 14-mosstep | M14ms | 13L + s | 763.6¢ to 821.1¢ | |
15-mosstep | Diminished 15-mosstep | d15ms | 12L + 3s | 757.9¢ to 818.2¢ |
Perfect 15-mosstep | P15ms | 13L + 2s | 818.2¢ to 821.1¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 13L + 3s | 821.1¢ to 872.7¢ |
Major 16-mosstep | M16ms | 14L + 2s | 872.7¢ to 884.2¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 14L + 3s | 884.2¢ to 927.3¢ |
Major 17-mosstep | M17ms | 15L + 2s | 927.3¢ to 947.4¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 15L + 3s | 947.4¢ to 981.8¢ |
Major 18-mosstep | M18ms | 16L + 2s | 981.8¢ to 1010.5¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 16L + 3s | 1010.5¢ to 1036.4¢ |
Major 19-mosstep | M19ms | 17L + 2s | 1036.4¢ to 1073.7¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 17L + 3s | 1073.7¢ to 1090.9¢ |
Major 20-mosstep | M20ms | 18L + 2s | 1090.9¢ to 1136.8¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 18L + 3s | 1136.8¢ to 1145.5¢ |
Major 21-mosstep | M21ms | 19L + 2s | 1145.5¢ to 1200.0¢ | |
22-mosstep | Perfect 22-mosstep | P22ms | 19L + 3s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
15\22 | 818.182 | 381.818 | 1:1 | 1.000 | Equalized 19L 3s | |||||
88\129 | 818.605 | 381.395 | 6:5 | 1.200 | ||||||
73\107 | 818.692 | 381.308 | 5:4 | 1.250 | ||||||
131\192 | 818.750 | 381.250 | 9:7 | 1.286 | ||||||
58\85 | 818.824 | 381.176 | 4:3 | 1.333 | Supersoft 19L 3s | |||||
159\233 | 818.884 | 381.116 | 11:8 | 1.375 | ||||||
101\148 | 818.919 | 381.081 | 7:5 | 1.400 | ||||||
144\211 | 818.957 | 381.043 | 10:7 | 1.429 | ||||||
43\63 | 819.048 | 380.952 | 3:2 | 1.500 | Soft 19L 3s | |||||
157\230 | 819.130 | 380.870 | 11:7 | 1.571 | ||||||
114\167 | 819.162 | 380.838 | 8:5 | 1.600 | ||||||
185\271 | 819.188 | 380.812 | 13:8 | 1.625 | ||||||
71\104 | 819.231 | 380.769 | 5:3 | 1.667 | Semisoft 19L 3s | |||||
170\249 | 819.277 | 380.723 | 12:7 | 1.714 | ||||||
99\145 | 819.310 | 380.690 | 7:4 | 1.750 | ||||||
127\186 | 819.355 | 380.645 | 9:5 | 1.800 | ||||||
28\41 | 819.512 | 380.488 | 2:1 | 2.000 | Basic 19L 3s Scales with tunings softer than this are proper Simplest tuning for Magic[22] | |||||
125\183 | 819.672 | 380.328 | 9:4 | 2.250 | ||||||
97\142 | 819.718 | 380.282 | 7:3 | 2.333 | ||||||
166\243 | 819.753 | 380.247 | 12:5 | 2.400 | ||||||
69\101 | 819.802 | 380.198 | 5:2 | 2.500 | Semihard 19L 3s | |||||
179\262 | 819.847 | 380.153 | 13:5 | 2.600 | ||||||
110\161 | 819.876 | 380.124 | 8:3 | 2.667 | ||||||
151\221 | 819.910 | 380.090 | 11:4 | 2.750 | ||||||
41\60 | 820.000 | 380.000 | 3:1 | 3.000 | Hard 19L 3s | |||||
136\199 | 820.101 | 379.899 | 10:3 | 3.333 | ||||||
95\139 | 820.144 | 379.856 | 7:2 | 3.500 | ||||||
149\218 | 820.183 | 379.817 | 11:3 | 3.667 | ||||||
54\79 | 820.253 | 379.747 | 4:1 | 4.000 | Superhard 19L 3s | |||||
121\177 | 820.339 | 379.661 | 9:2 | 4.500 | ||||||
67\98 | 820.408 | 379.592 | 5:1 | 5.000 | ||||||
80\117 | 820.513 | 379.487 | 6:1 | 6.000 | ||||||
13\19 | 821.053 | 378.947 | 1:0 | → ∞ | Collapsed 19L 3s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |