3L 21s
Jump to navigation
Jump to search
Scale structure
Step pattern
LsssssssLsssssssLsssssss
sssssssLsssssssLsssssssL
Equave
2/1 (1200.0¢)
Period
1\3 (400.0¢)
Generator size
Bright
7\24 to 1\3 (350.0¢ to 400.0¢)
Dark
0\3 to 1\24 (0.0¢ to 50.0¢)
TAMNAMS information
Descends from
3L 6s (tcherepnin)
Ancestor's step ratio range
6:1 to 1:0
Related MOS scales
Parent
3L 18s
Sister
21L 3s
Daughters
24L 3s, 3L 24s
Neutralized
6L 18s
2-Flought
27L 21s, 3L 45s
Equal tunings
Equalized (L:s = 1:1)
7\24 (350.0¢)
Supersoft (L:s = 4:3)
22\75 (352.0¢)
Soft (L:s = 3:2)
15\51 (352.9¢)
Semisoft (L:s = 5:3)
23\78 (353.8¢)
Basic (L:s = 2:1)
8\27 (355.6¢)
Semihard (L:s = 5:2)
17\57 (357.9¢)
Hard (L:s = 3:1)
9\30 (360.0¢)
Superhard (L:s = 4:1)
10\33 (363.6¢)
Collapsed (L:s = 1:0)
1\3 (400.0¢)
↖ 2L 20s | ↑ 3L 20s | 4L 20s ↗ |
← 2L 21s | 3L 21s | 4L 21s → |
↙ 2L 22s | ↓ 3L 22s | 4L 22s ↘ |
┌╥┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬╥┬┬┬┬┬┬┬┐ │║│││││││║│││││││║││││││││ ││││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
sssssssLsssssssLsssssssL
3L 21s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 3 large steps and 21 small steps, with a period of 1 large step and 7 small steps that repeats every 400.0¢, or 3 times every octave. 3L 21s is related to 3L 6s, expanding it by 15 tones. Generators that produce this scale range from 350¢ to 400¢, or from 0¢ to 50¢.
Modes
UDP | Cyclic order |
Step pattern |
---|---|---|
21|0(3) | 1 | LsssssssLsssssssLsssssss |
18|3(3) | 8 | sLsssssssLsssssssLssssss |
15|6(3) | 7 | ssLsssssssLsssssssLsssss |
12|9(3) | 6 | sssLsssssssLsssssssLssss |
9|12(3) | 5 | ssssLsssssssLsssssssLsss |
6|15(3) | 4 | sssssLsssssssLsssssssLss |
3|18(3) | 3 | ssssssLsssssssLsssssssLs |
0|21(3) | 2 | sssssssLsssssssLsssssssL |
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0¢ |
1-mosstep | Perfect 1-mosstep | P1ms | s | 0.0¢ to 50.0¢ |
Augmented 1-mosstep | A1ms | L | 50.0¢ to 400.0¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0¢ to 100.0¢ |
Major 2-mosstep | M2ms | L + s | 100.0¢ to 400.0¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0¢ to 150.0¢ |
Major 3-mosstep | M3ms | L + 2s | 150.0¢ to 400.0¢ | |
4-mosstep | Minor 4-mosstep | m4ms | 4s | 0.0¢ to 200.0¢ |
Major 4-mosstep | M4ms | L + 3s | 200.0¢ to 400.0¢ | |
5-mosstep | Minor 5-mosstep | m5ms | 5s | 0.0¢ to 250.0¢ |
Major 5-mosstep | M5ms | L + 4s | 250.0¢ to 400.0¢ | |
6-mosstep | Minor 6-mosstep | m6ms | 6s | 0.0¢ to 300.0¢ |
Major 6-mosstep | M6ms | L + 5s | 300.0¢ to 400.0¢ | |
7-mosstep | Diminished 7-mosstep | d7ms | 7s | 0.0¢ to 350.0¢ |
Perfect 7-mosstep | P7ms | L + 6s | 350.0¢ to 400.0¢ | |
8-mosstep | Perfect 8-mosstep | P8ms | L + 7s | 400.0¢ |
9-mosstep | Perfect 9-mosstep | P9ms | L + 8s | 400.0¢ to 450.0¢ |
Augmented 9-mosstep | A9ms | 2L + 7s | 450.0¢ to 800.0¢ | |
10-mosstep | Minor 10-mosstep | m10ms | L + 9s | 400.0¢ to 500.0¢ |
Major 10-mosstep | M10ms | 2L + 8s | 500.0¢ to 800.0¢ | |
11-mosstep | Minor 11-mosstep | m11ms | L + 10s | 400.0¢ to 550.0¢ |
Major 11-mosstep | M11ms | 2L + 9s | 550.0¢ to 800.0¢ | |
12-mosstep | Minor 12-mosstep | m12ms | L + 11s | 400.0¢ to 600.0¢ |
Major 12-mosstep | M12ms | 2L + 10s | 600.0¢ to 800.0¢ | |
13-mosstep | Minor 13-mosstep | m13ms | L + 12s | 400.0¢ to 650.0¢ |
Major 13-mosstep | M13ms | 2L + 11s | 650.0¢ to 800.0¢ | |
14-mosstep | Minor 14-mosstep | m14ms | L + 13s | 400.0¢ to 700.0¢ |
Major 14-mosstep | M14ms | 2L + 12s | 700.0¢ to 800.0¢ | |
15-mosstep | Diminished 15-mosstep | d15ms | L + 14s | 400.0¢ to 750.0¢ |
Perfect 15-mosstep | P15ms | 2L + 13s | 750.0¢ to 800.0¢ | |
16-mosstep | Perfect 16-mosstep | P16ms | 2L + 14s | 800.0¢ |
17-mosstep | Perfect 17-mosstep | P17ms | 2L + 15s | 800.0¢ to 850.0¢ |
Augmented 17-mosstep | A17ms | 3L + 14s | 850.0¢ to 1200.0¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 2L + 16s | 800.0¢ to 900.0¢ |
Major 18-mosstep | M18ms | 3L + 15s | 900.0¢ to 1200.0¢ | |
19-mosstep | Minor 19-mosstep | m19ms | 2L + 17s | 800.0¢ to 950.0¢ |
Major 19-mosstep | M19ms | 3L + 16s | 950.0¢ to 1200.0¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 2L + 18s | 800.0¢ to 1000.0¢ |
Major 20-mosstep | M20ms | 3L + 17s | 1000.0¢ to 1200.0¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 2L + 19s | 800.0¢ to 1050.0¢ |
Major 21-mosstep | M21ms | 3L + 18s | 1050.0¢ to 1200.0¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 2L + 20s | 800.0¢ to 1100.0¢ |
Major 22-mosstep | M22ms | 3L + 19s | 1100.0¢ to 1200.0¢ | |
23-mosstep | Diminished 23-mosstep | d23ms | 2L + 21s | 800.0¢ to 1150.0¢ |
Perfect 23-mosstep | P23ms | 3L + 20s | 1150.0¢ to 1200.0¢ | |
24-mosstep | Perfect 24-mosstep | P24ms | 3L + 21s | 1200.0¢ |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||
---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||
7\24 | 350.000 | 50.000 | 1:1 | 1.000 | Equalized 3L 21s | |||||
36\123 | 351.220 | 48.780 | 6:5 | 1.200 | ||||||
29\99 | 351.515 | 48.485 | 5:4 | 1.250 | ||||||
51\174 | 351.724 | 48.276 | 9:7 | 1.286 | ||||||
22\75 | 352.000 | 48.000 | 4:3 | 1.333 | Supersoft 3L 21s | |||||
59\201 | 352.239 | 47.761 | 11:8 | 1.375 | ||||||
37\126 | 352.381 | 47.619 | 7:5 | 1.400 | ||||||
52\177 | 352.542 | 47.458 | 10:7 | 1.429 | ||||||
15\51 | 352.941 | 47.059 | 3:2 | 1.500 | Soft 3L 21s | |||||
53\180 | 353.333 | 46.667 | 11:7 | 1.571 | ||||||
38\129 | 353.488 | 46.512 | 8:5 | 1.600 | ||||||
61\207 | 353.623 | 46.377 | 13:8 | 1.625 | ||||||
23\78 | 353.846 | 46.154 | 5:3 | 1.667 | Semisoft 3L 21s | |||||
54\183 | 354.098 | 45.902 | 12:7 | 1.714 | ||||||
31\105 | 354.286 | 45.714 | 7:4 | 1.750 | ||||||
39\132 | 354.545 | 45.455 | 9:5 | 1.800 | ||||||
8\27 | 355.556 | 44.444 | 2:1 | 2.000 | Basic 3L 21s Scales with tunings softer than this are proper | |||||
33\111 | 356.757 | 43.243 | 9:4 | 2.250 | ||||||
25\84 | 357.143 | 42.857 | 7:3 | 2.333 | ||||||
42\141 | 357.447 | 42.553 | 12:5 | 2.400 | ||||||
17\57 | 357.895 | 42.105 | 5:2 | 2.500 | Semihard 3L 21s | |||||
43\144 | 358.333 | 41.667 | 13:5 | 2.600 | ||||||
26\87 | 358.621 | 41.379 | 8:3 | 2.667 | ||||||
35\117 | 358.974 | 41.026 | 11:4 | 2.750 | ||||||
9\30 | 360.000 | 40.000 | 3:1 | 3.000 | Hard 3L 21s | |||||
28\93 | 361.290 | 38.710 | 10:3 | 3.333 | ||||||
19\63 | 361.905 | 38.095 | 7:2 | 3.500 | ||||||
29\96 | 362.500 | 37.500 | 11:3 | 3.667 | ||||||
10\33 | 363.636 | 36.364 | 4:1 | 4.000 | Superhard 3L 21s | |||||
21\69 | 365.217 | 34.783 | 9:2 | 4.500 | ||||||
11\36 | 366.667 | 33.333 | 5:1 | 5.000 | ||||||
12\39 | 369.231 | 30.769 | 6:1 | 6.000 | ||||||
1\3 | 400.000 | 0.000 | 1:0 | → ∞ | Collapsed 3L 21s |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |