6L 17s
Jump to navigation
Jump to search
↖ 5L 16s | ↑ 6L 16s | 7L 16s ↗ |
← 5L 17s | 6L 17s | 7L 17s → |
↙ 5L 18s | ↓ 6L 18s | 7L 18s ↘ |
┌╥┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬╥┬┬┬┐ │║││║│││║│││║│││║│││║││││ │││││││││││││││││││││││││ └┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┴┘
Scale structure
sssLsssLsssLsssLsssLssL
Generator size
TAMNAMS information
Related MOS scales
Equal tunings
6L 17s is a 2/1-equivalent (octave-equivalent) moment of symmetry scale containing 6 large steps and 17 small steps, repeating every octave. 6L 17s is a great-grandchild scale of 5L 1s, expanding it by 17 tones. Generators that produce this scale range from 991.3 ¢ to 1000 ¢, or from 200 ¢ to 208.7 ¢.
Scale properties
- This article uses TAMNAMS conventions for the names of this scale's intervals and scale degrees. The use of 1-indexed ordinal names is reserved for interval regions.
Intervals
Intervals | Steps subtended |
Range in cents | ||
---|---|---|---|---|
Generic | Specific | Abbrev. | ||
0-mosstep | Perfect 0-mosstep | P0ms | 0 | 0.0 ¢ |
1-mosstep | Minor 1-mosstep | m1ms | s | 0.0 ¢ to 52.2 ¢ |
Major 1-mosstep | M1ms | L | 52.2 ¢ to 200.0 ¢ | |
2-mosstep | Minor 2-mosstep | m2ms | 2s | 0.0 ¢ to 104.3 ¢ |
Major 2-mosstep | M2ms | L + s | 104.3 ¢ to 200.0 ¢ | |
3-mosstep | Minor 3-mosstep | m3ms | 3s | 0.0 ¢ to 156.5 ¢ |
Major 3-mosstep | M3ms | L + 2s | 156.5 ¢ to 200.0 ¢ | |
4-mosstep | Perfect 4-mosstep | P4ms | L + 3s | 200.0 ¢ to 208.7 ¢ |
Augmented 4-mosstep | A4ms | 2L + 2s | 208.7 ¢ to 400.0 ¢ | |
5-mosstep | Minor 5-mosstep | m5ms | L + 4s | 200.0 ¢ to 260.9 ¢ |
Major 5-mosstep | M5ms | 2L + 3s | 260.9 ¢ to 400.0 ¢ | |
6-mosstep | Minor 6-mosstep | m6ms | L + 5s | 200.0 ¢ to 313.0 ¢ |
Major 6-mosstep | M6ms | 2L + 4s | 313.0 ¢ to 400.0 ¢ | |
7-mosstep | Minor 7-mosstep | m7ms | L + 6s | 200.0 ¢ to 365.2 ¢ |
Major 7-mosstep | M7ms | 2L + 5s | 365.2 ¢ to 400.0 ¢ | |
8-mosstep | Minor 8-mosstep | m8ms | 2L + 6s | 400.0 ¢ to 417.4 ¢ |
Major 8-mosstep | M8ms | 3L + 5s | 417.4 ¢ to 600.0 ¢ | |
9-mosstep | Minor 9-mosstep | m9ms | 2L + 7s | 400.0 ¢ to 469.6 ¢ |
Major 9-mosstep | M9ms | 3L + 6s | 469.6 ¢ to 600.0 ¢ | |
10-mosstep | Minor 10-mosstep | m10ms | 2L + 8s | 400.0 ¢ to 521.7 ¢ |
Major 10-mosstep | M10ms | 3L + 7s | 521.7 ¢ to 600.0 ¢ | |
11-mosstep | Minor 11-mosstep | m11ms | 2L + 9s | 400.0 ¢ to 573.9 ¢ |
Major 11-mosstep | M11ms | 3L + 8s | 573.9 ¢ to 600.0 ¢ | |
12-mosstep | Minor 12-mosstep | m12ms | 3L + 9s | 600.0 ¢ to 626.1 ¢ |
Major 12-mosstep | M12ms | 4L + 8s | 626.1 ¢ to 800.0 ¢ | |
13-mosstep | Minor 13-mosstep | m13ms | 3L + 10s | 600.0 ¢ to 678.3 ¢ |
Major 13-mosstep | M13ms | 4L + 9s | 678.3 ¢ to 800.0 ¢ | |
14-mosstep | Minor 14-mosstep | m14ms | 3L + 11s | 600.0 ¢ to 730.4 ¢ |
Major 14-mosstep | M14ms | 4L + 10s | 730.4 ¢ to 800.0 ¢ | |
15-mosstep | Minor 15-mosstep | m15ms | 3L + 12s | 600.0 ¢ to 782.6 ¢ |
Major 15-mosstep | M15ms | 4L + 11s | 782.6 ¢ to 800.0 ¢ | |
16-mosstep | Minor 16-mosstep | m16ms | 4L + 12s | 800.0 ¢ to 834.8 ¢ |
Major 16-mosstep | M16ms | 5L + 11s | 834.8 ¢ to 1000.0 ¢ | |
17-mosstep | Minor 17-mosstep | m17ms | 4L + 13s | 800.0 ¢ to 887.0 ¢ |
Major 17-mosstep | M17ms | 5L + 12s | 887.0 ¢ to 1000.0 ¢ | |
18-mosstep | Minor 18-mosstep | m18ms | 4L + 14s | 800.0 ¢ to 939.1 ¢ |
Major 18-mosstep | M18ms | 5L + 13s | 939.1 ¢ to 1000.0 ¢ | |
19-mosstep | Diminished 19-mosstep | d19ms | 4L + 15s | 800.0 ¢ to 991.3 ¢ |
Perfect 19-mosstep | P19ms | 5L + 14s | 991.3 ¢ to 1000.0 ¢ | |
20-mosstep | Minor 20-mosstep | m20ms | 5L + 15s | 1000.0 ¢ to 1043.5 ¢ |
Major 20-mosstep | M20ms | 6L + 14s | 1043.5 ¢ to 1200.0 ¢ | |
21-mosstep | Minor 21-mosstep | m21ms | 5L + 16s | 1000.0 ¢ to 1095.7 ¢ |
Major 21-mosstep | M21ms | 6L + 15s | 1095.7 ¢ to 1200.0 ¢ | |
22-mosstep | Minor 22-mosstep | m22ms | 5L + 17s | 1000.0 ¢ to 1147.8 ¢ |
Major 22-mosstep | M22ms | 6L + 16s | 1147.8 ¢ to 1200.0 ¢ | |
23-mosstep | Perfect 23-mosstep | P23ms | 6L + 17s | 1200.0 ¢ |
Generator chain
Bright gens | Scale degree | Abbrev. |
---|---|---|
28 | Augmented 3-mosdegree | A3md |
27 | Augmented 7-mosdegree | A7md |
26 | Augmented 11-mosdegree | A11md |
25 | Augmented 15-mosdegree | A15md |
24 | Augmented 19-mosdegree | A19md |
23 | Augmented 0-mosdegree | A0md |
22 | Augmented 4-mosdegree | A4md |
21 | Major 8-mosdegree | M8md |
20 | Major 12-mosdegree | M12md |
19 | Major 16-mosdegree | M16md |
18 | Major 20-mosdegree | M20md |
17 | Major 1-mosdegree | M1md |
16 | Major 5-mosdegree | M5md |
15 | Major 9-mosdegree | M9md |
14 | Major 13-mosdegree | M13md |
13 | Major 17-mosdegree | M17md |
12 | Major 21-mosdegree | M21md |
11 | Major 2-mosdegree | M2md |
10 | Major 6-mosdegree | M6md |
9 | Major 10-mosdegree | M10md |
8 | Major 14-mosdegree | M14md |
7 | Major 18-mosdegree | M18md |
6 | Major 22-mosdegree | M22md |
5 | Major 3-mosdegree | M3md |
4 | Major 7-mosdegree | M7md |
3 | Major 11-mosdegree | M11md |
2 | Major 15-mosdegree | M15md |
1 | Perfect 19-mosdegree | P19md |
0 | Perfect 0-mosdegree Perfect 23-mosdegree |
P0md P23md |
−1 | Perfect 4-mosdegree | P4md |
−2 | Minor 8-mosdegree | m8md |
−3 | Minor 12-mosdegree | m12md |
−4 | Minor 16-mosdegree | m16md |
−5 | Minor 20-mosdegree | m20md |
−6 | Minor 1-mosdegree | m1md |
−7 | Minor 5-mosdegree | m5md |
−8 | Minor 9-mosdegree | m9md |
−9 | Minor 13-mosdegree | m13md |
−10 | Minor 17-mosdegree | m17md |
−11 | Minor 21-mosdegree | m21md |
−12 | Minor 2-mosdegree | m2md |
−13 | Minor 6-mosdegree | m6md |
−14 | Minor 10-mosdegree | m10md |
−15 | Minor 14-mosdegree | m14md |
−16 | Minor 18-mosdegree | m18md |
−17 | Minor 22-mosdegree | m22md |
−18 | Minor 3-mosdegree | m3md |
−19 | Minor 7-mosdegree | m7md |
−20 | Minor 11-mosdegree | m11md |
−21 | Minor 15-mosdegree | m15md |
−22 | Diminished 19-mosdegree | d19md |
−23 | Diminished 23-mosdegree | d23md |
−24 | Diminished 4-mosdegree | d4md |
−25 | Diminished 8-mosdegree | d8md |
−26 | Diminished 12-mosdegree | d12md |
−27 | Diminished 16-mosdegree | d16md |
−28 | Diminished 20-mosdegree | d20md |
Modes
UDP | Cyclic order |
Step pattern |
Scale degree (mosdegree) | |||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | |||
22|0 | 1 | LssLsssLsssLsssLsssLsss | Perf. | Maj. | Maj. | Maj. | Aug. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
21|1 | 20 | LsssLssLsssLsssLsssLsss | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
20|2 | 16 | LsssLsssLssLsssLsssLsss | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
19|3 | 12 | LsssLsssLsssLssLsssLsss | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
18|4 | 8 | LsssLsssLsssLsssLssLsss | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Perf. |
17|5 | 4 | LsssLsssLsssLsssLsssLss | Perf. | Maj. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
16|6 | 23 | sLssLsssLsssLsssLsssLss | Perf. | Min. | Maj. | Maj. | Perf. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
15|7 | 19 | sLsssLssLsssLsssLsssLss | Perf. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
14|8 | 15 | sLsssLsssLssLsssLsssLss | Perf. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
13|9 | 11 | sLsssLsssLsssLssLsssLss | Perf. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
12|10 | 7 | sLsssLsssLsssLsssLssLss | Perf. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Maj. | Maj. | Perf. |
11|11 | 3 | sLsssLsssLsssLsssLsssLs | Perf. | Min. | Maj. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Perf. |
10|12 | 22 | ssLssLsssLsssLsssLsssLs | Perf. | Min. | Min. | Maj. | Perf. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Perf. |
9|13 | 18 | ssLsssLssLsssLsssLsssLs | Perf. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Perf. |
8|14 | 14 | ssLsssLsssLssLsssLsssLs | Perf. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Perf. |
7|15 | 10 | ssLsssLsssLsssLssLsssLs | Perf. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Perf. |
6|16 | 6 | ssLsssLsssLsssLsssLssLs | Perf. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Perf. |
5|17 | 2 | ssLsssLsssLsssLsssLsssL | Perf. | Min. | Min. | Maj. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
4|18 | 21 | sssLssLsssLsssLsssLsssL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
3|19 | 17 | sssLsssLssLsssLsssLsssL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
2|20 | 13 | sssLsssLsssLssLsssLsssL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Maj. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
1|21 | 9 | sssLsssLsssLsssLssLsssL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Perf. |
0|22 | 5 | sssLsssLsssLsssLsssLssL | Perf. | Min. | Min. | Min. | Perf. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Min. | Dim. | Min. | Min. | Min. | Perf. |
Scale tree
Generator(edo) | Cents | Step ratio | Comments | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Bright | Dark | L:s | Hardness | |||||||||
19\23 | 991.304 | 208.696 | 1:1 | 1.000 | Equalized 6L 17s | |||||||
138\167 | 991.617 | 208.383 | 8:7 | 1.143 | ||||||||
119\144 | 991.667 | 208.333 | 7:6 | 1.167 | ||||||||
219\265 | 991.698 | 208.302 | 13:11 | 1.182 | ||||||||
100\121 | 991.736 | 208.264 | 6:5 | 1.200 | ||||||||
281\340 | 991.765 | 208.235 | 17:14 | 1.214 | ||||||||
181\219 | 991.781 | 208.219 | 11:9 | 1.222 | ||||||||
262\317 | 991.798 | 208.202 | 16:13 | 1.231 | ||||||||
81\98 | 991.837 | 208.163 | 5:4 | 1.250 | ||||||||
305\369 | 991.870 | 208.130 | 19:15 | 1.267 | ||||||||
224\271 | 991.882 | 208.118 | 14:11 | 1.273 | ||||||||
367\444 | 991.892 | 208.108 | 23:18 | 1.278 | ||||||||
143\173 | 991.908 | 208.092 | 9:7 | 1.286 | ||||||||
348\421 | 991.924 | 208.076 | 22:17 | 1.294 | ||||||||
205\248 | 991.935 | 208.065 | 13:10 | 1.300 | ||||||||
267\323 | 991.950 | 208.050 | 17:13 | 1.308 | ||||||||
62\75 | 992.000 | 208.000 | 4:3 | 1.333 | Supersoft 6L 17s | |||||||
291\352 | 992.045 | 207.955 | 19:14 | 1.357 | ||||||||
229\277 | 992.058 | 207.942 | 15:11 | 1.364 | ||||||||
396\479 | 992.067 | 207.933 | 26:19 | 1.368 | ||||||||
167\202 | 992.079 | 207.921 | 11:8 | 1.375 | ||||||||
439\531 | 992.090 | 207.910 | 29:21 | 1.381 | ||||||||
272\329 | 992.097 | 207.903 | 18:13 | 1.385 | ||||||||
377\456 | 992.105 | 207.895 | 25:18 | 1.389 | ||||||||
105\127 | 992.126 | 207.874 | 7:5 | 1.400 | ||||||||
358\433 | 992.148 | 207.852 | 24:17 | 1.412 | ||||||||
253\306 | 992.157 | 207.843 | 17:12 | 1.417 | ||||||||
401\485 | 992.165 | 207.835 | 27:19 | 1.421 | ||||||||
148\179 | 992.179 | 207.821 | 10:7 | 1.429 | ||||||||
339\410 | 992.195 | 207.805 | 23:16 | 1.438 | ||||||||
191\231 | 992.208 | 207.792 | 13:9 | 1.444 | ||||||||
234\283 | 992.226 | 207.774 | 16:11 | 1.455 | ||||||||
43\52 | 992.308 | 207.692 | 3:2 | 1.500 | Soft 6L 17s | |||||||
239\289 | 992.388 | 207.612 | 17:11 | 1.545 | ||||||||
196\237 | 992.405 | 207.595 | 14:9 | 1.556 | ||||||||
349\422 | 992.417 | 207.583 | 25:16 | 1.562 | ||||||||
153\185 | 992.432 | 207.568 | 11:7 | 1.571 | ||||||||
416\503 | 992.445 | 207.555 | 30:19 | 1.579 | ||||||||
263\318 | 992.453 | 207.547 | 19:12 | 1.583 | ||||||||
373\451 | 992.461 | 207.539 | 27:17 | 1.588 | ||||||||
110\133 | 992.481 | 207.519 | 8:5 | 1.600 | ||||||||
397\480 | 992.500 | 207.500 | 29:18 | 1.611 | ||||||||
287\347 | 992.507 | 207.493 | 21:13 | 1.615 | ||||||||
464\561 | 992.513 | 207.487 | 34:21 | 1.619 | ||||||||
177\214 | 992.523 | 207.477 | 13:8 | 1.625 | ||||||||
421\509 | 992.534 | 207.466 | 31:19 | 1.632 | ||||||||
244\295 | 992.542 | 207.458 | 18:11 | 1.636 | ||||||||
311\376 | 992.553 | 207.447 | 23:14 | 1.643 | ||||||||
67\81 | 992.593 | 207.407 | 5:3 | 1.667 | Semisoft 6L 17s | |||||||
292\353 | 992.635 | 207.365 | 22:13 | 1.692 | ||||||||
225\272 | 992.647 | 207.353 | 17:10 | 1.700 | ||||||||
383\463 | 992.657 | 207.343 | 29:17 | 1.706 | ||||||||
158\191 | 992.670 | 207.330 | 12:7 | 1.714 | ||||||||
407\492 | 992.683 | 207.317 | 31:18 | 1.722 | ||||||||
249\301 | 992.691 | 207.309 | 19:11 | 1.727 | ||||||||
340\411 | 992.701 | 207.299 | 26:15 | 1.733 | ||||||||
91\110 | 992.727 | 207.273 | 7:4 | 1.750 | ||||||||
297\359 | 992.758 | 207.242 | 23:13 | 1.769 | ||||||||
206\249 | 992.771 | 207.229 | 16:9 | 1.778 | ||||||||
321\388 | 992.784 | 207.216 | 25:14 | 1.786 | ||||||||
115\139 | 992.806 | 207.194 | 9:5 | 1.800 | ||||||||
254\307 | 992.834 | 207.166 | 20:11 | 1.818 | ||||||||
139\168 | 992.857 | 207.143 | 11:6 | 1.833 | ||||||||
163\197 | 992.893 | 207.107 | 13:7 | 1.857 | ||||||||
24\29 | 993.103 | 206.897 | 2:1 | 2.000 | Basic 6L 17s Scales with tunings softer than this are proper | |||||||
149\180 | 993.333 | 206.667 | 13:6 | 2.167 | ||||||||
125\151 | 993.377 | 206.623 | 11:5 | 2.200 | ||||||||
226\273 | 993.407 | 206.593 | 20:9 | 2.222 | ||||||||
101\122 | 993.443 | 206.557 | 9:4 | 2.250 | ||||||||
279\337 | 993.472 | 206.528 | 25:11 | 2.273 | ||||||||
178\215 | 993.488 | 206.512 | 16:7 | 2.286 | ||||||||
255\308 | 993.506 | 206.494 | 23:10 | 2.300 | ||||||||
77\93 | 993.548 | 206.452 | 7:3 | 2.333 | ||||||||
284\343 | 993.586 | 206.414 | 26:11 | 2.364 | ||||||||
207\250 | 993.600 | 206.400 | 19:8 | 2.375 | ||||||||
337\407 | 993.612 | 206.388 | 31:13 | 2.385 | ||||||||
130\157 | 993.631 | 206.369 | 12:5 | 2.400 | ||||||||
313\378 | 993.651 | 206.349 | 29:12 | 2.417 | ||||||||
183\221 | 993.665 | 206.335 | 17:7 | 2.429 | ||||||||
236\285 | 993.684 | 206.316 | 22:9 | 2.444 | ||||||||
53\64 | 993.750 | 206.250 | 5:2 | 2.500 | Semihard 6L 17s | |||||||
241\291 | 993.814 | 206.186 | 23:9 | 2.556 | ||||||||
188\227 | 993.833 | 206.167 | 18:7 | 2.571 | ||||||||
323\390 | 993.846 | 206.154 | 31:12 | 2.583 | ||||||||
135\163 | 993.865 | 206.135 | 13:5 | 2.600 | ||||||||
352\425 | 993.882 | 206.118 | 34:13 | 2.615 | ||||||||
217\262 | 993.893 | 206.107 | 21:8 | 2.625 | ||||||||
299\361 | 993.906 | 206.094 | 29:11 | 2.636 | ||||||||
82\99 | 993.939 | 206.061 | 8:3 | 2.667 | ||||||||
275\332 | 993.976 | 206.024 | 27:10 | 2.700 | ||||||||
193\233 | 993.991 | 206.009 | 19:7 | 2.714 | ||||||||
304\367 | 994.005 | 205.995 | 30:11 | 2.727 | ||||||||
111\134 | 994.030 | 205.970 | 11:4 | 2.750 | ||||||||
251\303 | 994.059 | 205.941 | 25:9 | 2.778 | ||||||||
140\169 | 994.083 | 205.917 | 14:5 | 2.800 | ||||||||
169\204 | 994.118 | 205.882 | 17:6 | 2.833 | ||||||||
29\35 | 994.286 | 205.714 | 3:1 | 3.000 | Hard 6L 17s | |||||||
150\181 | 994.475 | 205.525 | 16:5 | 3.200 | ||||||||
121\146 | 994.521 | 205.479 | 13:4 | 3.250 | ||||||||
213\257 | 994.553 | 205.447 | 23:7 | 3.286 | ||||||||
92\111 | 994.595 | 205.405 | 10:3 | 3.333 | ||||||||
247\298 | 994.631 | 205.369 | 27:8 | 3.375 | ||||||||
155\187 | 994.652 | 205.348 | 17:5 | 3.400 | ||||||||
218\263 | 994.677 | 205.323 | 24:7 | 3.429 | ||||||||
63\76 | 994.737 | 205.263 | 7:2 | 3.500 | ||||||||
223\269 | 994.796 | 205.204 | 25:7 | 3.571 | ||||||||
160\193 | 994.819 | 205.181 | 18:5 | 3.600 | ||||||||
257\310 | 994.839 | 205.161 | 29:8 | 3.625 | ||||||||
97\117 | 994.872 | 205.128 | 11:3 | 3.667 | ||||||||
228\275 | 994.909 | 205.091 | 26:7 | 3.714 | ||||||||
131\158 | 994.937 | 205.063 | 15:4 | 3.750 | ||||||||
165\199 | 994.975 | 205.025 | 19:5 | 3.800 | ||||||||
34\41 | 995.122 | 204.878 | 4:1 | 4.000 | Superhard 6L 17s Quadrimage | |||||||
141\170 | 995.294 | 204.706 | 17:4 | 4.250 | ||||||||
107\129 | 995.349 | 204.651 | 13:3 | 4.333 | ||||||||
180\217 | 995.392 | 204.608 | 22:5 | 4.400 | ||||||||
73\88 | 995.455 | 204.545 | 9:2 | 4.500 | ||||||||
185\223 | 995.516 | 204.484 | 23:5 | 4.600 | ||||||||
112\135 | 995.556 | 204.444 | 14:3 | 4.667 | ||||||||
151\182 | 995.604 | 204.396 | 19:4 | 4.750 | ||||||||
39\47 | 995.745 | 204.255 | 5:1 | 5.000 | ||||||||
122\147 | 995.918 | 204.082 | 16:3 | 5.333 | Baldy is optimal around here | |||||||
83\100 | 996.000 | 204.000 | 11:2 | 5.500 | ||||||||
127\153 | 996.078 | 203.922 | 17:3 | 5.667 | ||||||||
44\53 | 996.226 | 203.774 | 6:1 | 6.000 | ||||||||
93\112 | 996.429 | 203.571 | 13:2 | 6.500 | ||||||||
49\59 | 996.610 | 203.390 | 7:1 | 7.000 | ||||||||
54\65 | 996.923 | 203.077 | 8:1 | 8.000 | ||||||||
5\6 | 1000.000 | 200.000 | 1:0 | → ∞ | Collapsed 6L 17s |
![]() |
This page is a stub. You can help the Xenharmonic Wiki by expanding it. |