361edo
← 360edo | 361edo | 362edo → |
361 equal divisions of the octave (abbreviated 361edo or 361ed2), also called 361-tone equal temperament (361tet) or 361 equal temperament (361et) when viewed under a regular temperament perspective, is the tuning system that divides the octave into 361 equal parts of about 3.32 ¢ each. Each step represents a frequency ratio of 21/361, or the 361st root of 2.
Theory
361et is consistent to the 9-odd-limit with flat tunings of harmonics 3, 5, and 7. The equal temperament tempers out 4375/4374, 703125/702464, 2460375/2458624, 43046721/43025920, and 48828125/48771072 in the 7-limit. It supports the 5-limit submajor temperament.
Odd harmonics
Harmonic | 3 | 5 | 7 | 9 | 11 | 13 | 15 | 17 | 19 | 21 | 23 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Error | Absolute (¢) | -0.57 | -0.72 | -1.51 | -1.14 | +0.48 | +0.47 | -1.29 | +1.42 | +1.66 | +1.24 | -0.02 |
Relative (%) | -17.1 | -21.6 | -45.5 | -34.3 | +14.5 | +14.1 | -38.8 | +42.6 | +49.8 | +37.3 | -0.6 | |
Steps (reduced) |
572 (211) |
838 (116) |
1013 (291) |
1144 (61) |
1249 (166) |
1336 (253) |
1410 (327) |
1476 (32) |
1534 (90) |
1586 (142) |
1633 (189) |
Subsets and supersets
361 factors into 192, with 19edo as its only edo subset.
Regular temperament properties
Subgroup | Comma list | Mapping | Optimal 8ve stretch (¢) |
Tuning error | |
---|---|---|---|---|---|
Absolute (¢) | Relative (%) | ||||
2.3 | [-572 361⟩ | [⟨361 572]] | 0.1798 | 0.1798 | 5.41 |
2.3.5 | [-36 11 8⟩, [-14 -19 19⟩ | [⟨361 572 838]] | 0.2230 | 0.1590 | 4.78 |
2.3.5.7 | 4375/4374, 823543/819200, 2460375/2458624 | [⟨361 572 838 1013]] | 0.3020 | 0.1941 | 5.84 |
Rank-2 temperaments
Periods per 8ve |
Generator* | Cents* | Associated ratio* |
Temperaments |
---|---|---|---|---|
1 | 166\361 | 551.80 | 48/35 | Emka |
19 | 150\361 (2\361) |
498.61 (6.65) |
4/3 (225/224) |
Enneadecal |
* Octave-reduced form, reduced to the first half-octave, and minimal form in parentheses if it is distinct